Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Protein Sci ; 33(6): e5000, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747401

RESUMEN

G protein-coupled receptors (GPCRs) are one of the most important families of targets for drug discovery. One of the limiting steps in the study of GPCRs has been their stability, with significant and time-consuming protein engineering often used to stabilize GPCRs for structural characterization and drug screening. Unfortunately, computational methods developed using globular soluble proteins have translated poorly to the rational engineering of GPCRs. To fill this gap, we propose GPCR-tm, a novel and personalized structurally driven web-based machine learning tool to study the impacts of mutations on GPCR stability. We show that GPCR-tm performs as well as or better than alternative methods, and that it can accurately rank the stability changes of a wide range of mutations occurring in various types of class A GPCRs. GPCR-tm achieved Pearson's correlation coefficients of 0.74 and 0.46 on 10-fold cross-validation and blind test sets, respectively. We observed that the (structural) graph-based signatures were the most important set of features for predicting destabilizing mutations, which points out that these signatures properly describe the changes in the environment where the mutations occur. More specifically, GPCR-tm was able to accurately rank mutations based on their effect on protein stability, guiding their rational stabilization. GPCR-tm is available through a user-friendly web server at https://biosig.lab.uq.edu.au/gpcr_tm/.


Asunto(s)
Ingeniería de Proteínas , Estabilidad Proteica , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ingeniería de Proteínas/métodos , Humanos , Aprendizaje Automático , Mutación , Programas Informáticos , Modelos Moleculares
2.
Comput Struct Biotechnol J ; 23: 3030-3039, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39175797

RESUMEN

Current medical research has been demonstrating the roles of miRNAs in a variety of cellular mechanisms, lending credence to the association between miRNA dysregulation and multiple diseases. Understanding the mechanisms of miRNA is critical for developing effective diagnostic and therapeutic strategies. miRNA-mRNA interactions emerge as the most important mechanism to be understood despite their experimental validation constraints. Accordingly, several computational models have been developed to predict miRNA-mRNA interactions, albeit presenting limited predictive capabilities, poor characterisation of miRNA-mRNA interactions, and low usability. To address these drawbacks, we developed PRIMITI, a PRedictive model for the Identification of novel miRNA-Target mRNA Interactions. PRIMITI is a novel machine learning model that utilises CLIP-seq and expression data to characterise functional target sites in 3'-untranslated regions (3'-UTRs) and predict miRNA-target mRNA repression activity. The model was trained using a reliable negative sample selection approach and the robust extreme gradient boosting (XGBoost) model, which was coupled with newly introduced features, including sequence and genetic variation information. PRIMITI achieved an area under the receiver operating characteristic (ROC) curve (AUC) up to 0.96 for a prediction of functional miRNA-target site binding and 0.96 for a prediction of miRNA-target mRNA repression activity on cross-validation and an independent blind test. Additionally, the model outperformed state-of-the-art methods in recovering miRNA-target repressions in an unseen microarray dataset and in a collection of validated miRNA-mRNA interactions, highlighting its utility for preliminary screening. PRIMITI is available on a reliable, scalable, and user-friendly web server at https://biosig.lab.uq.edu.au/primiti.

3.
Curr Opin Pharmacol ; 74: 102427, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38219398

RESUMEN

This article investigates the role of recent advances in Artificial Intelligence (AI) to revolutionise the study of G protein-coupled receptors (GPCRs). AI has been applied to many areas of GPCR research, including the application of machine learning (ML) in GPCR classification, prediction of GPCR activation levels, modelling GPCR 3D structures and interactions, understanding G-protein selectivity, aiding elucidation of GPCRs structures, and drug design. Despite progress, challenges in predicting GPCR structures and addressing the complex nature of GPCRs remain, providing avenues for future research and development.


Asunto(s)
Inteligencia Artificial , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/química , Aprendizaje Automático
4.
J Cheminform ; 16(1): 81, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030592

RESUMEN

While drug combination therapies are of great importance, particularly in cancer treatment, identifying novel synergistic drug combinations has been a challenging venture. Computational methods have emerged in this context as a promising tool for prioritizing drug combinations for further evaluation, though they have presented limited performance, utility, and interpretability. Here, we propose a novel predictive tool, piscesCSM, that leverages graph-based representations to model small molecule chemical structures to accurately predict drug combinations with favourable anticancer synergistic effects against one or multiple cancer cell lines. Leveraging these insights, we developed a general supervised machine learning model to guide the prediction of anticancer synergistic drug combinations in over 30 cell lines. It achieved an area under the receiver operating characteristic curve (AUROC) of up to 0.89 on independent non-redundant blind tests, outperforming state-of-the-art approaches on both large-scale oncology screening data and an independent test set generated by AstraZeneca (with more than a 16% improvement in predictive accuracy). Moreover, by exploring the interpretability of our approach, we found that simple physicochemical properties and graph-based signatures are predictive of chemotherapy synergism. To provide a simple and integrated platform to rapidly screen potential candidate pairs with favourable synergistic anticancer effects, we made piscesCSM freely available online at https://biosig.lab.uq.edu.au/piscescsm/ as a web server and API. We believe that our predictive tool will provide a valuable resource for optimizing and augmenting combinatorial screening libraries to identify effective and safe synergistic anticancer drug combinations. SCIENTIFIC CONTRIBUTION: This work proposes piscesCSM, a machine-learning-based framework that relies on well-established graph-based representations of small molecules to identify and provide better predictive accuracy of syngenetic drug combinations. Our model, piscesCSM, shows that combining physiochemical properties with graph-based signatures can outperform current architectures on classification prediction tasks. Furthermore, implementing our tool as a web server offers a user-friendly platform for researchers to screen for potential synergistic drug combinations with favorable anticancer effects against one or multiple cancer cell lines.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38180643

RESUMEN

Glycoside hydrolases (GHs) are a diverse group of enzymes that catalyze the hydrolysis of glycosidic bonds. The Carbohydrate-Active enZymes (CAZy) classification organizes GHs into families based on sequence data and function, with fewer than 1% of the predicted proteins characterized biochemically. Consideration of genomic context can provide clues to infer possible enzyme activities for proteins of unknown function. We used the MultiGeneBLAST tool to discover a gene cluster in Marinovum sp., a member of the marine Roseobacter clade, that encodes homologues of enzymes belonging to the sulfoquinovose monooxygenase pathway for sulfosugar catabolism. This cluster lacks a gene encoding a classical family GH31 sulfoquinovosidase candidate, but which instead includes an uncharacterized family GH13 protein (MsGH13) that we hypothesized could be a non-classical sulfoquinovosidase. Surprisingly, recombinant MsGH13 lacks sulfoquinovosidase activity and is a broad-spectrum α-glucosidase that is active on a diverse array of α-linked disaccharides, including maltose, sucrose, nigerose, trehalose, isomaltose, and kojibiose. Using AlphaFold, a 3D model for the MsGH13 enzyme was constructed that predicted its active site shared close similarity with an α-glucosidase from Halomonas sp. H11 of the same GH13 subfamily that shows narrower substrate specificity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA