Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 17(10): e1009856, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34673778

RESUMEN

The conserved adapter protein Scribble (Scrib) plays essential roles in a variety of cellular processes, including polarity establishment, proliferation, and directed cell migration. While the mechanisms through which Scrib promotes epithelial polarity are beginning to be unraveled, its roles in other cellular processes including cell migration remain enigmatic. In C. elegans, the Scrib ortholog LET-413 is essential for apical-basal polarization and junction formation in embryonic epithelia. However, whether LET-413 is required for postembryonic development or plays a role in migratory events is not known. Here, we use inducible protein degradation to investigate the functioning of LET-413 in larval epithelia. We find that LET-413 is essential in the epidermal epithelium for growth, viability, and junction maintenance. In addition, we identify a novel role for LET-413 in the polarized outgrowth of the epidermal seam cells. These stem cell-like epithelial cells extend anterior and posterior directed apical protrusions in each larval stage to reconnect to their neighbors. We show that the role of LET-413 in seam cell outgrowth is likely mediated largely by the junctional component DLG-1 discs large, which we demonstrate is also essential for directed outgrowth of the seam cells. Our data uncover multiple essential functions for LET-413 in larval development and show that the polarized outgrowth of the epithelial seam cells is controlled by LET-413 Scribble and DLG-1 Discs large.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Células Epiteliales/metabolismo , Animales , Polaridad Celular/fisiología , Epitelio/metabolismo , Uniones Intercelulares/metabolismo
2.
Plant Cell ; 26(11): 4345-61, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25381352

RESUMEN

Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin-remodeling factors contribute to plant organogenesis. We demonstrate that the trithorax group (trxG) gene ULTRAPETALA1 (ULT1) and the GARP transcription factor gene KANADI1 (KAN1) organize the Arabidopsis thaliana gynoecium along two distinct polarity axes. We show that ULT1 activity is required for the kan1 adaxialized polarity defect, indicating that ULT1 and KAN1 act oppositely to regulate the adaxial-abaxial axis. Conversely, ULT1 and KAN1 together establish apical-basal polarity by promoting basal cell fate in the gynoecium, restricting the expression domain of the basic helix-loop-helix transcription factor gene SPATULA. Finally, we show that ult alleles display dose-dependent genetic interactions with kan alleles and that ULT and KAN proteins can associate physically. Our findings identify a dual role for plant trxG factors in organ patterning, with ULT1 and KAN1 acting antagonistically to pattern the adaxial-abaxial polarity axis but jointly to pattern the apical-basal axis. Our data indicate that the ULT proteins function to link chromatin-remodeling factors with DNA binding transcription factors to regulate target gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/citología , Flores/crecimiento & desarrollo , Flores/metabolismo , Hibridación in Situ , Modelos Biológicos , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Unión Proteica , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
3.
Elife ; 92020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33300872

RESUMEN

The cortical polarity regulators PAR-6, PKC-3, and PAR-3 are essential for the polarization of a broad variety of cell types in multicellular animals. In C. elegans, the roles of the PAR proteins in embryonic development have been extensively studied, yet little is known about their functions during larval development. Using inducible protein degradation, we show that PAR-6 and PKC-3, but not PAR-3, are essential for postembryonic development. PAR-6 and PKC-3 are required in the epidermal epithelium for animal growth, molting, and the proper pattern of seam-cell divisions. Finally, we uncovered a novel role for PAR-6 in organizing non-centrosomal microtubule arrays in the epidermis. PAR-6 was required for the localization of the microtubule organizer NOCA-1/Ninein, and defects in a noca-1 mutant are highly similar to those caused by epidermal PAR-6 depletion. As NOCA-1 physically interacts with PAR-6, we propose that PAR-6 promotes non-centrosomal microtubule organization through localization of NOCA-1/Ninein.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Epidermis/metabolismo , Microtúbulos/metabolismo , Proteína Quinasa C/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , División Celular , Larva , Proteína Quinasa C/metabolismo
4.
J Mol Biol ; 430(19): 3521-3544, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29289568

RESUMEN

Interactions between proteins are an essential part of biology, and the desire to identify these interactions has led to the development of numerous technologies to systematically map protein-protein interactions at a large scale. As in most cellular processes, protein interactions are central to the control of cell polarity, and a full understanding of polarity will require comprehensive knowledge of the protein interactions involved. At its core, cell polarity is established through carefully regulated mutually inhibitory interactions between several groups of cortical proteins. While several interactions have been identified, the dynamics and molecular mechanisms that control these interactions are not well understood. Cell polarity also needs to be integrated with cellular processes including junction formation, cytoskeletal organization, organelle positioning, protein trafficking, and functional specialization of membrane domains. Moreover, polarized cells need to respond to external cues that coordinate polarity at the tissue level. Identifying the protein-protein interactions responsible for integrating polarity with all of these processes remains a major challenge, in part because the mechanisms of polarity control vary in different contexts and with developmental times. Because of their unbiased nature, systematic large-scale protein-protein interaction mapping approaches can be particularly helpful to identify such mechanisms. Here, we discuss methods commonly used to generate proteome-wide interactome maps, with an emphasis on advances in our understanding of cell polarity that have been achieved through application of such methods.


Asunto(s)
Polaridad Celular/fisiología , Mapeo de Interacción de Proteínas , Proteoma , Proteómica , Animales , Humanos , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteómica/métodos
5.
J Cell Biol ; 216(4): 943-960, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28320824

RESUMEN

The molecular motor dynein concentrates at the kinetochore region of mitotic chromosomes in animals to accelerate spindle microtubule capture and to control spindle checkpoint signaling. In this study, we describe the molecular mechanism used by the Rod-Zw10-Zwilch complex and the adaptor Spindly to recruit dynein to kinetochores in Caenorhabditis elegans embryos and human cells. We show that Rod's N-terminal ß-propeller and the associated Zwilch subunit bind Spindly's C-terminal domain, and we identify a specific Zwilch mutant that abrogates Spindly and dynein recruitment in vivo and Spindly binding to a Rod ß-propeller-Zwilch complex in vitro. Spindly's N-terminal coiled-coil uses distinct motifs to bind dynein light intermediate chain and the pointed-end complex of dynactin. Mutations in these motifs inhibit assembly of a dynein-dynactin-Spindly complex, and a null mutant of the dynactin pointed-end subunit p27 prevents kinetochore recruitment of dynein-dynactin without affecting other mitotic functions of the motor. Conservation of Spindly-like motifs in adaptors involved in intracellular transport suggests a common mechanism for linking dynein to cargo.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Dineínas/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Segregación Cromosómica/fisiología , Complejo Dinactina/metabolismo , Células HeLa , Humanos , Cinetocoros/fisiología , Microtúbulos/metabolismo , Microtúbulos/fisiología , Mitosis/fisiología , Huso Acromático/fisiología
6.
Plant Signal Behav ; 10(7): e1034422, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042822

RESUMEN

The SAND domain protein ULTRAPETALA1 (ULT1) functions as a trithorax group factor that regulates a variety of developmental processes in Arabidopsis. We have recently shown that ULT1 regulates developmental patterning in the gynoecia and leaves. ULT1 acts together with the KANADI1 (KAN1) transcription factor to pattern the apical-basal axis during gynoecium formation, whereas the 2 genes act antagonistically to pattern the adaxial-abaxial axis during both gynoecium and leaf formation. In particular, our data showed that ULT1 is necessary for the kan1 adaxialized organ phenotype. Here, we observe the internal structure of ult1, kan1 and ult1 kan1 rosette leaves to better understand the suppression of the kan1 adaxialized leaf polarity defect by ult1 mutations. Our results indicate that ULT1 and KAN1 act antagonistically to pattern the adaxial-abaxial axis in leaves by establishing the asymmetry of the internal cell layers.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/embriología , Tipificación del Cuerpo , Polaridad Celular , Hojas de la Planta/citología , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo
7.
Mol Plant ; 6(5): 1564-79, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23446032

RESUMEN

The epigenetic regulation of gene expression is critical for ensuring the proper deployment and stability of defined genome transcription programs at specific developmental stages. The cellular memory of stable gene expression states during animal and plant development is mediated by the opposing activities of Polycomb group (PcG) factors and trithorax group (trxG) factors. Yet, despite their importance, only a few trxG factors have been characterized in plants and their roles in regulating plant development are poorly defined. In this work, we report that the closely related Arabidopsis trxG genes ULTRAPETALA1 (ULT1) and ULT2 have overlapping functions in regulating shoot and floral stem cell accumulation, with ULT1 playing a major role but ULT2 also making a minor contribution. The two genes also have a novel, redundant activity in establishing the apical­basal polarity axis of the gynoecium, indicating that they function in differentiating tissues. Like ULT1 proteins, ULT2 proteins have a dual nuclear and cytoplasmic localization, and the two proteins physically associate in planta. Finally, we demonstrate that ULT1 and ULT2 have very similar overexpression phenotypes and regulate a common set of key development target genes, including floral MADS-box genes and class I KNOX genes. Our results reveal that chromatin remodeling mediated by the ULT1 and ULT2 proteins is necessary to control the development of meristems and reproductive organs. They also suggest that, like their animal counterparts, plant trxG proteins may function in multi-protein complexes to up-regulate the expression of key stage- and tissue-specific developmental regulatory genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Desarrollo de la Planta/genética , Factores de Transcripción/genética , Arabidopsis/anatomía & histología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Polaridad Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Inflorescencia/anatomía & histología , Inflorescencia/genética , Inflorescencia/ultraestructura , Meristema/anatomía & histología , Meristema/genética , Meristema/ultraestructura , Mutación/genética , Tamaño de los Órganos/genética , Fenotipo , Plantas Modificadas Genéticamente , Unión Proteica/genética , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/metabolismo , Factores de Transcripción/metabolismo
8.
Methods Mol Biol ; 655: 131-42, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20734258

RESUMEN

Flowers contain the male and female sexual organs that are critical for plant reproduction and survival. Each individual flower is produced from a floral meristem that arises on the flank of the shoot apical meristem and consists of four organ types: sepals, petals, stamens, and carpels. Because floral meristems contain a transient stem-cell pool that generates a small number of organs composed of a limited number of cell types, they are excellent model systems for studying stem-cell maintenance and termination, cell fate specification, organ morphogenesis, and pattern formation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Flores/crecimiento & desarrollo , Flores/ultraestructura , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , Arabidopsis/citología , Flores/citología , Meristema/citología , Microscopía Confocal/métodos , Microscopía Electrónica de Rastreo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA