Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood Purif ; 53(1): 30-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37918364

RESUMEN

INTRODUCTION: Endotoxin is a key driver of sepsis, which frequently causes acute kidney injury (AKI). However, endotoxins may also be found in non-bacteremic critically ill patients, likely from intestinal translocation. Preclinical models show that endotoxins can directly injure the kidneys, and in COVID-19 patients, endotoxemia correlated with AKI. We sought to determine correlations between endotoxemia and kidney and hospital outcomes in a broad group of critically ill patients. METHODS: In this single-center, serial prospective study, 124 predominantly Caucasian adult patients were recruited within 48 h of admission to Stony Brook University Hospital Intensive Care Unit (ICU). Demographics, vital signs, laboratory data, and outcomes were collected. Circulating endotoxin was measured on days 1, 4, and 8 using the endotoxin activity assay (EAA). The association of EAA with outcomes was examined with EAA: (1) categorized as <0.6, ≥0.6, and nonresponders (NRs); and (2) used as a continuous variable. RESULTS: Patients with EAA ≥0.6 had a higher prevalence of proteinuria, and lower arterial oxygen saturation (SaO2) to fraction of inspired oxygen (FiO2) (SaO2/FiO2) ratio versus patients with EAA <0.6. EAA levels positively correlated with serum creatinine (sCr) levels on day 1. Patients whose EAA level stayed ≥0.6 had a slower decline in sCr compared to those whose EAA started at ≥0.6 and subsequently declined. Patients with AKI stage 1 and EAA ≥0.6 on day 1 showed slower decline in sCr compared to patients with stage 1 AKI and EAA <0.6. EAA ≥0.6 and NR patients had longer hospital stay and delayed ICU discharge versus EAA <0.6. CONCLUSIONS: High EAA levels correlated with worse kidney function and outcomes. Patients whose EAA levels fell, and those with AKI stage I and day 1 EAA <0.6 recovered more quickly compared to those with EAA ≥0.6, suggesting that removal of circulating endotoxins may be beneficial in critically ill patients.


Asunto(s)
Lesión Renal Aguda , Endotoxemia , Adulto , Humanos , Endotoxemia/complicaciones , Endotoxemia/terapia , Estudios Prospectivos , Tiempo de Internación , Enfermedad Crítica/epidemiología , Endotoxinas , Unidades de Cuidados Intensivos , Lesión Renal Aguda/epidemiología , Riñón , Oxígeno
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074766

RESUMEN

Altered cellular metabolism in kidney proximal tubule (PT) cells plays a critical role in acute kidney injury (AKI). The transcription factor Krüppel-like factor 6 (KLF6) is rapidly and robustly induced early in the PT after AKI. We found that PT-specific Klf6 knockdown (Klf6PTKD) is protective against AKI and kidney fibrosis in mice. Combined RNA and chromatin immunoprecipitation sequencing analysis demonstrated that expression of genes encoding branched-chain amino acid (BCAA) catabolic enzymes was preserved in Klf6PTKD mice, with KLF6 occupying the promoter region of these genes. Conversely, inducible KLF6 overexpression suppressed expression of BCAA genes and exacerbated kidney injury and fibrosis in mice. In vitro, injured cells overexpressing KLF6 had similar decreases in BCAA catabolic gene expression and were less able to utilize BCAA. Furthermore, knockdown of BCKDHB, which encodes one subunit of the rate-limiting enzyme in BCAA catabolism, resulted in reduced ATP production, while treatment with BCAA catabolism enhancer BT2 increased metabolism. Analysis of kidney function, KLF6, and BCAA gene expression in human chronic kidney disease patients showed significant inverse correlations between KLF6 and both kidney function and BCAA expression. Thus, targeting KLF6-mediated suppression of BCAA catabolism may serve as a key therapeutic target in AKI and kidney fibrosis.


Asunto(s)
Lesión Renal Aguda/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Riñón/lesiones , Riñón/metabolismo , Factor 6 Similar a Kruppel/metabolismo , Lesión Renal Aguda/patología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inflamación , Riñón/patología , Túbulos Renales Proximales/metabolismo , Factor 6 Similar a Kruppel/genética , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Factores de Transcripción/metabolismo
3.
Pediatr Nephrol ; 38(4): 975-986, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36181578

RESUMEN

The kidney, and in particular the proximal tubule (PT), has a high demand for ATP, due to its function in bulk reabsorption of solutes. In normal PT, ATP levels are predominantly maintained by fatty acid ß-oxidation (FAO), the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. The normal PT also undertakes gluconeogenesis and metabolism of amino acids. Acute kidney injury (AKI) results in profound PT metabolic alterations, including suppression of FAO, gluconeogenesis, and metabolism of some amino acids, and upregulation of glycolytic enzymes. Recent studies have elucidated new transcriptional mechanisms regulating metabolic pathways in normal PT, as well as the metabolic switch in AKI. A number of transcription factors have been shown to play important roles in FAO, which are themselves downregulated in AKI, while hypoxia-inducible factor 1α, which is upregulated in ischemia-reperfusion injury, is a likely driver of the upregulation of glycolytic enzymes. Transcriptional regulation of amino acid metabolic pathways is less well understood, except for catabolism of branched-chain amino acids, which is likely suppressed in AKI by upregulation of Krüppel-like factor 6. This review will focus on the transcriptional regulation of specific metabolic pathways in normal PT and in AKI, as well as highlighting some of the gaps in knowledge and challenges that remain to be addressed.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Humanos , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Daño por Reperfusión/metabolismo , Aminoácidos/metabolismo , Adenosina Trifosfato/metabolismo
4.
Kidney Int ; 100(6): 1250-1267, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634362

RESUMEN

Loss of fatty acid ß-oxidation (FAO) in the proximal tubule is a critical mediator of acute kidney injury and eventual fibrosis. However, transcriptional mediators of FAO in proximal tubule injury remain understudied. Krüppel-like factor 15 (KLF15), a highly enriched zinc-finger transcription factor in the proximal tubule, was significantly reduced in proximal tubule cells after aristolochic acid I (AAI) treatment, a proximal tubule-specific injury model. Proximal tubule specific knockout of Klf15 exacerbated proximal tubule injury and kidney function decline compared to control mice during the active phase of AAI treatment, and after ischemia-reperfusion injury. Furthermore, along with worsening proximal tubule injury and kidney function decline, knockout mice exhibited increased kidney fibrosis as compared to control mice during the remodeling phase after AAI treatment. RNA-sequencing of kidney cortex demonstrated increased transcripts involved in immune system and integrin signaling pathways and decreased transcripts encompassing metabolic pathways, specifically FAO, and PPARα signaling, in knockout versus control mice after AAI treatment. In silico and experimental chromatin immunoprecipitation studies collectively demonstrated that KLF15 occupied the promoter region of key FAO genes, CPT1A and ACAA2, in close proximity to transcription factor PPARα binding sites. While the loss of Klf15 reduced the expression of Cpt1a and Acaa2 and led to compromised FAO, induction of KLF15 partially rescued loss of FAO in AAI-treated cells. Klf15, Ppara, Cpt1a, and Acaa2 expression was also decreased in other mouse kidney injury models. Tubulointerstitial KLF15 independently correlated with eGFR, PPARA and CPT1A appearance in expression arrays from human kidney biopsies. Thus, proximal tubule-specific loss of Klf15 exacerbates acute kidney injury and fibrosis, likely due to loss of interaction with PPARα leading to loss of FAO gene transcription.


Asunto(s)
Lesión Renal Aguda , Ácidos Grasos/metabolismo , Factores de Transcripción de Tipo Kruppel , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Animales , Riñón , Túbulos Renales Proximales , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados
5.
Am J Med Genet A ; 170(11): 2988-2992, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27540713

RESUMEN

The aim of this study was to identify the causative mutation in a family with an unusual presentation of autosomal dominant osteopetrosis (OPT), proximal renal tubular acidosis (RTA), renal stones, epilepsy, and blindness, a combination of features not previously reported. We undertook exome sequencing of one affected and one unaffected family member, followed by targeted analysis of known candidate genes to identify the causative mutation. This identified a missense mutation (c.643G>A; p.Gly215Arg) in the gene encoding the chloride/proton antiporter 7 (gene CLCN7, protein CLC-7), which was confirmed by amplification refractory mutation system (ARMS)-PCR, and to be present in the three available patients. CLC-7 mutations are known to cause autosomal dominant OPT type 2, also called Albers-Schonberg disease, which is characterized by osteosclerosis, predominantly of the spine, pelvis and skull base, resulting in bone fragility and fractures. Albers-Schonberg disease is not reported to be associated with RTA, but autosomal recessive OPT type 3 (OPTB3) with RTA is associated with carbonic anhydrase type 2 (CA2) mutations. No mutations were detected in CA2 or any other genes known to cause proximal RTA. Neither CLCN7 nor CA2 mutations have previously been reported to be associated with renal stones or epilepsy. Thus, we identified a CLCN7 mutation in a family with autosomal dominant osteopetrosis, RTA, renal stones, epilepsy, and blindness. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Acidosis Tubular Renal/diagnóstico , Acidosis Tubular Renal/genética , Canales de Cloruro , Genes Dominantes , Estudios de Asociación Genética , Mutación , Osteopetrosis/diagnóstico , Osteopetrosis/genética , Alelos , Preescolar , Análisis Mutacional de ADN , Exoma , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Linaje , Fenotipo , Radiografía
6.
Proc Natl Acad Sci U S A ; 110(17): 7014-9, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23572577

RESUMEN

Receptor-mediated endocytosis, involving megalin and cubilin, mediates renal proximal-tubular reabsorption and is decreased in Dent disease because of mutations of the chloride/proton antiporter, chloride channel-5 (CLC-5), resulting in low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. To facilitate studies of receptor-mediated endocytosis and the role of CLC-5, we established conditionally immortalized proximal-tubular epithelial cell lines (ciPTECs) from three patients with CLC-5 mutations (30:insH, R637X, and del132-241) and a normal male. Confocal microscopy using the tight junction marker zona occludens-1 (ZO-1) and end-binding protein-1 (EB-1), which is specific for the plus end of microtubules demonstrated that the ciPTECs polarized. Receptor-mediated endocytic uptake of fluorescent albumin and transferrin in 30:insH and R637X ciPTECs was significantly decreased, compared with normal ciPTECs, and could be further reduced by competition with 10-fold excess of unlabeled albumin and transferrin, whereas in the del132-241 ciPTEC, receptor-mediated endocytic uptake was abolished. Investigation of endosomal acidification by live-cell imaging of pHluorin-VAMP2 (vesicle-associated membrane protein-2), a pH-sensitive-GFP construct, revealed that the endosomal pH in normal and 30:insH ciPTECs was similar, whereas in del132-241 and R637X ciPTECs, it was significantly more alkaline, indicating defective acidification in these ciPTECs. The addition of bafilomycin-A1, a V-ATPase inhibitor, raised the pH significantly in all ciPTECs, demonstrating that the differences in acidification were not due to alterations in the V-ATPase, but instead to abnormalities of CLC-5. Thus, our studies, which have established human Dent disease ciPTECs that will facilitate studies of mechanisms in renal reabsorption, demonstrate that Dent disease-causing CLC-5 mutations have differing effects on endosomal acidification and receptor-mediated endocytosis that may not be coupled.


Asunto(s)
Enfermedad de Dent/fisiopatología , Endocitosis/fisiología , Endosomas/química , Células Epiteliales/fisiología , Túbulos Renales Proximales/citología , Línea Celular , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Enfermedad de Dent/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Microscopía Confocal , Mutación/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
7.
Nephron ; 147(12): 766-768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37263229

RESUMEN

Members of the Krüppel-like family of transcription factors are widely expressed, including in the kidney. Expression of some KLFs changes in acute kidney injury, and this may be adaptive or maladaptive, and result in effects on various cellular pathways. This mini-review will highlight the roles of KLF6 and KLF15 in control of proximal tubular cell metabolism.


Asunto(s)
Factores de Transcripción de Tipo Kruppel , Factores de Transcripción , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Riñón/metabolismo , Células Epiteliales/metabolismo , Factor 6 Similar a Kruppel/genética , Factor 6 Similar a Kruppel/metabolismo
8.
Hum Mol Genet ; 19(10): 2028-38, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20190276

RESUMEN

GCMB is a member of the small transcription factor family GCM (glial cells missing), which are important regulators of development, present in vertebrates and some invertebrates. In man, GCMB encodes a 506 amino acid parathyroid gland-specific protein, mutations of which have been reported to cause both autosomal dominant and autosomal recessive hypoparathyroidism. We ascertained 18 affected individuals from 12 families with autosomal recessive hypoparathyroidism and have investigated them for GCMB abnormalities. Four different homozygous germline mutations were identified in eight families that originate from the Indian Subcontinent. These consisted of a novel nonsense mutation R39X; a missense mutation, R47L in two families; a novel missense mutation, R110W; and a novel frameshifting deletion, I298fsX307 in four families. Haplotype analysis, using polymorphic microsatellites from chromosome 6p23-24, revealed that R47L and I298fsX307 mutations arose either as ancient founders, or recurrent de novo mutations. Functional studies including: subcellular localization studies, EMSAs and luciferase-reporter assays, were undertaken and these demonstrated that: the R39X mutant failed to localize to the nucleus; the R47L and R110W mutants both lost DNA-binding ability; and the I298fsX307 mutant had reduced transactivational ability. In order to gain further insights, we undertook 3D-modeling of the GCMB DNA-binding domain, which revealed that the R110 residue is likely important for the structural integrity of helix 2, which forms part of the GCMB/DNA binding interface. Thus, our results, which expand the spectrum of hypoparathyroidism-associated GCMB mutations, help elucidate the molecular mechanisms underlying DNA-binding and transactivation that are required for this parathyroid-specific transcription factor.


Asunto(s)
Genes Recesivos/genética , Hipoparatiroidismo/genética , Mutación/genética , Proteínas Nucleares/genética , Glándulas Paratiroides/patología , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Núcleo Celular/metabolismo , ADN/metabolismo , Pruebas de Enzimas , Familia , Femenino , Genes Reporteros , Humanos , Luciferasas/metabolismo , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Nucleares/química , Especificidad de Órganos/genética , Glándulas Paratiroides/metabolismo , Linaje , Unión Proteica , Transporte de Proteínas , Factores de Transcripción/química
9.
Hum Genet ; 129(1): 51-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20976470

RESUMEN

Familial juvenile hyperuricaemic (gouty) nephropathy (FJHN), is an autosomal dominant disease associated with a reduced fractional excretion of urate, and progressive renal failure. FJHN is genetically heterogeneous and due to mutations of three genes: uromodulin (UMOD), renin (REN) and hepatocyte nuclear factor-1beta (HNF-1ß) on chromosomes 16p12, 1q32.1, and 17q12, respectively. However, UMOD, REN or HNF-1ß mutations are found in only approximately 45% of FJHN probands, indicating the involvement of other genetic loci in approximately 55% of probands. To identify other FJHN loci, we performed a single nucleotide polymorphism (SNP)-based genome-wide linkage analysis, in six FJHN families in whom UMOD, HNF-1ß and REN mutations had been excluded. Parametric linkage analysis using a 'rare dominant' model established linkage in five of the six FJHN families, with a LOD score >+3, at 0% recombination, between FJHN and SNPs at chromosome 2p22.1-p21. Analysis of individual recombinants in two unrelated affected individuals defined a approximately 5.5 Mbp interval, flanked telomerically by SNP RS372139 and centromerically by RS896986 that contained the locus, designated FJHN3. The interval contains 28 genes, and DNA sequence analysis of the most likely candidate, solute carrier family 8 member 1 (SLC8A1), did not identify any abnormalities in the FJHN3 probands. FJHN3 is likely located within a approximately 5.5 Mbp interval on chromosome 2p22.1-p21, and identifying the genetic abnormality will help to further elucidate mechanisms predisposing to gout and renal failure.


Asunto(s)
Cromosomas Humanos Par 2/genética , Sitios Genéticos , Genoma Humano , Femenino , Heterogeneidad Genética , Ligamiento Genético , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Gota/genética , Humanos , Hiperuricemia/genética , Enfermedades Renales/genética , Fallo Renal Crónico/genética , Masculino , Linaje , Ácido Úrico/sangre , Ácido Úrico/metabolismo
10.
Nephron ; 144(12): 613-615, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32645697

RESUMEN

The proximal tubule (PT) is a major target in acute kidney injury (AKI), leading to profound changes in PT cell biology. Amongst the genes with early and robust changes in expression are many transcription factors (TFs), which themselves account for other transcriptomic changes. Potentially important TFs are being revealed in large sequencing datasets; however, to understand whether these TFs account for adaptive or maladaptive changes requires further mechanistic studies, which may reveal novel therapeutic targets. This mini review will highlight the identification and biology of 3 novel TFs in AKI: Sox9, Foxm1, and Foxo3.


Asunto(s)
Lesión Renal Aguda/metabolismo , Túbulos Renales Proximales/metabolismo , Factores de Transcripción/metabolismo , Humanos
11.
Endocr Connect ; 9(5): 426-437, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32348957

RESUMEN

Multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder caused by MEN1 germline mutations, is characterised by parathyroid, pancreatic and pituitary tumours. MEN1 mutations also cause familial isolated primary hyperparathyroidism (FIHP), a milder condition causing hyperparathyroidism only. Identical mutations can cause either MEN1 or FIHP in different families, thereby implicating a role for genetic modifiers in altering phenotypic expression of tumours. We therefore investigated the effects of genetic background and potential for genetic modifiers on tumour development in adult Men1+/- mice, which develop tumours of the parathyroids, pancreatic islets, anterior pituitary, adrenal cortex and gonads, that had been backcrossed to generate C57BL/6 and 129S6/SvEv congenic strains. A total of 275 Men1+/- mice, aged 5-26 months were macroscopically studied, and this revealed that genetic background significantly influenced the development of pituitary, adrenal and ovarian tumours, which occurred in mice over 12 months of age and more frequently in C57BL/6 females, 129S6/SvEv males and 129S6/SvEv females, respectively. Moreover, pituitary and adrenal tumours developed earlier, in C57BL/6 males and 129S6/SvEv females, respectively, and pancreatic and testicular tumours developed earlier in 129S6/SvEv males. Furthermore, glucagon-positive staining pancreatic tumours occurred more frequently in 129S6/SvEv Men1+/- mice. Whole genome sequence analysis of 129S6/SvEv and C57BL/6 Men1+/- mice revealed >54,000 different variants in >300 genes. These included, Coq7, Dmpk, Ccne2, Kras, Wnt2b, Il3ra and Tnfrsf10a, and qRT-PCR analysis revealed that Kras was significantly higher in pituitaries of male 129S6/SvEv mice. Thus, our results demonstrate that Kras and other genes could represent possible genetic modifiers of Men1.

12.
J Bone Miner Res ; 34(3): 497-507, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30395686

RESUMEN

Renal calcification (RCALC) resulting in nephrolithiasis and nephrocalcinosis, which affects ∼10% of adults by 70 years of age, involves environmental and genetic etiologies. Thus, nephrolithiasis and nephrocalcinosis occurs as an inherited disorder in ∼65% of patients, and may be associated with endocrine and metabolic disorders including: primary hyperparathyroidism, hypercalciuria, renal tubular acidosis, cystinuria, and hyperoxaluria. Investigations of families with nephrolithiasis and nephrocalcinosis have identified some causative genes, but further progress is limited as large families are unavailable for genetic studies. We therefore embarked on establishing mouse models for hereditary nephrolithiasis and nephrocalcinosis by performing abdominal X-rays to identify renal opacities in N-ethyl-N-nitrosourea (ENU)-mutagenized mice. This identified a mouse with RCALC inherited as an autosomal dominant trait, designated RCALC type 2 (RCALC2). Genomewide mapping located the Rcalc2 locus to a ∼16-Mbp region on chromosome 11D-E2 and whole-exome sequence analysis identified a heterozygous mutation in the DNA polymerase gamma-2, accessory subunit (Polg2) resulting in a nonsense mutation, Tyr265Stop (Y265X), which co-segregated with RCALC2. Kidneys of mutant mice (Polg2+/Y265X ) had lower POLG2 mRNA and protein expression, compared to wild-type littermates (Polg2+/+ ). The Polg2+/Y265X and Polg2+/+ mice had similar plasma concentrations of sodium, potassium, calcium, phosphate, chloride, urea, creatinine, glucose, and alkaline phosphatase activity; and similar urinary fractional excretion of calcium, phosphate, oxalate, and protein. Polg2 encodes the minor subunit of the mitochondrial DNA (mtDNA) polymerase and the mtDNA content in Polg2+/Y265X kidneys was reduced compared to Polg2+/+ mice, and cDNA expression profiling revealed differential expression of 26 genes involved in several biological processes including mitochondrial DNA function, apoptosis, and ubiquitination, the complement pathway, and inflammatory pathways. In addition, plasma of Polg2+/Y265X mice, compared to Polg2+/+ littermates had higher levels of reactive oxygen species. Thus, our studies have identified a mutant mouse model for inherited renal calcification associated with a Polg2 nonsense mutation. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.


Asunto(s)
Calcinosis , Codón de Terminación , ADN Polimerasa gamma , Etilnitrosourea/toxicidad , Enfermedades Renales , Riñón , Animales , Calcinosis/genética , Calcinosis/metabolismo , Calcinosis/patología , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ratones , Ratones Mutantes
13.
J Bone Miner Res ; 34(7): 1324-1335, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30830987

RESUMEN

Nephrolithiasis (NL) and nephrocalcinosis (NC), which comprise renal calcification of the collecting system and parenchyma, respectively, have a multifactorial etiology with environmental and genetic determinants and affect ∼10% of adults by age 70 years. Studies of families with hereditary NL and NC have identified >30 causative genes that have increased our understanding of extracellular calcium homeostasis and renal tubular transport of calcium. However, these account for <20% of the likely genes that are involved, and to identify novel genes for renal calcification disorders, we investigated 1745 12-month-old progeny from a male mouse that had been treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for radiological renal opacities. This identified a male mouse with renal calcification that was inherited as an autosomal dominant trait with >80% penetrance in 152 progeny. The calcification consisted of calcium phosphate deposits in the renal papillae and was associated with the presence of the urinary macromolecules osteopontin and Tamm-Horsfall protein, which are features found in Randall's plaques of patients with NC. Genome-wide mapping located the disease locus to a ∼30 Mbp region on chromosome 17A3.3-B3 and whole-exome sequence analysis identified a heterozygous mutation, resulting in a missense substitution (Met149Thr, M149T), in the bromodomain-containing protein 4 (BRD4). The mutant heterozygous (Brd4+/M149T ) mice, when compared with wild-type (Brd4+/+ ) mice, were normocalcemic and normophosphatemic, with normal urinary excretions of calcium and phosphate, and had normal bone turnover markers. BRD4 plays a critical role in histone modification and gene transcription, and cDNA expression profiling, using kidneys from Brd4+/M149T and Brd4+/+ mice, revealed differential expression of genes involved in vitamin D metabolism, cell differentiation, and apoptosis. Kidneys from Brd4+/M149T mice also had increased apoptosis at sites of calcification within the renal papillae. Thus, our studies have established a mouse model, due to a Brd4 Met149Thr mutation, for inherited NC. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Mutación Missense/genética , Nefrocalcinosis/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Segregación Cromosómica/genética , Cromosomas de los Mamíferos/genética , Modelos Animales de Enfermedad , Femenino , Sitios Genéticos , Riñón/patología , Masculino , Ratones , Nefrocalcinosis/orina , Proteínas Nucleares/química , Fenotipo , Factores de Transcripción/química , Transcripción Genética , Secuenciación del Exoma
14.
Diabetes ; 67(11): 2420-2433, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30115650

RESUMEN

Mitochondrial injury is uniformly observed in several murine models as well as in individuals with diabetic kidney disease (DKD). Although emerging evidence has highlighted the role of key transcriptional regulators in mitochondrial biogenesis, little is known about the regulation of mitochondrial cytochrome c oxidase assembly in the podocyte under diabetic conditions. We recently reported a critical role of the zinc finger Krüppel-like factor 6 (KLF6) in maintaining mitochondrial function and preventing apoptosis in a proteinuric murine model. In this study, we report that podocyte-specific knockdown of Klf6 increased the susceptibility to streptozotocin-induced DKD in the resistant C57BL/6 mouse strain. We observed that the loss of KLF6 in podocytes reduced the expression of synthesis of cytochrome c oxidase 2 with resultant increased mitochondrial injury, leading to activation of the intrinsic apoptotic pathway under diabetic conditions. Conversely, mitochondrial injury and apoptosis were significantly attenuated with overexpression of KLF6 in cultured human podocytes under hyperglycemic conditions. Finally, we observed a significant reduction in glomerular and podocyte-specific expression of KLF6 in human kidney biopsies with progression of DKD. Collectively, these data suggest that podocyte-specific KLF6 is critical to preventing mitochondrial injury and apoptosis under diabetic conditions.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Factor 6 Similar a Kruppel/metabolismo , Mitocondrias/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Animales , Apoptosis/fisiología , Presión Sanguínea/fisiología , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/patología , Tasa de Filtración Glomerular/fisiología , Humanos , Riñón/metabolismo , Riñón/patología , Factor 6 Similar a Kruppel/genética , Ratones , Mitocondrias/patología , Podocitos/patología , Proteinuria/patología
15.
JBMR Plus ; 2(3): 154-163, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30283900

RESUMEN

Kyphosis and scoliosis are common spinal disorders that occur as part of complex syndromes or as nonsyndromic, idiopathic diseases. Familial and twin studies implicate genetic involvement, although the causative genes for idiopathic kyphoscoliosis remain to be identified. To facilitate these studies, we investigated progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and assessed them for morphological and radiographic abnormalities. This identified a mouse with kyphoscoliosis due to fused lumbar vertebrae, which was inherited as an autosomal dominant trait; the phenotype was designated as hereditary vertebral fusion (HVF) and the locus as Hvf. Micro-computed tomography (µCT) analysis confirmed the occurrence of nonsyndromic kyphoscoliosis due to fusion of lumbar vertebrae in HVF mice, consistent with a pattern of blocked vertebrae due to failure of segmentation. µCT scans also showed the lumbar vertebral column of HVF mice to have generalized disc narrowing, displacement with compression of the neural spine, and distorted transverse processes. Histology of lumbar vertebrae revealed HVF mice to have irregularly shaped vertebral bodies and displacement of intervertebral discs and ossification centers. Genetic mapping using a panel of single nucleotide polymorphic (SNP) loci arranged in chromosome sets and DNA samples from 23 HVF (eight males and 15 females) mice, localized Hvf to chromosome 4A3 and within a 5-megabase (Mb) region containing nine protein coding genes, two processed transcripts, three microRNAs, five small nuclear RNAs, three large intergenic noncoding RNAs, and 24 pseudogenes. However, genome sequence analysis in this interval did not identify any abnormalities in the coding exons, or exon-intron boundaries of any of these genes. Thus, our studies have established a mouse model for a monogenic form of nonsyndromic kyphoscoliosis due to fusion of lumbar vertebrae, and further identification of the underlying genetic defect will help elucidate the molecular mechanisms involved in kyphoscoliosis. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

16.
Dis Model Mech ; 10(6): 773-786, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28325753

RESUMEN

Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (ADTKD) due to missense uromodulin (UMOD) mutations (ADTKD-UMOD). ADTKD-UMOD, which is associated with retention of mutant uromodulin in the endoplasmic reticulum (ER) of renal thick ascending limb cells, is characterized by hyperuricemia, interstitial fibrosis, inflammation and renal failure, and we used targeted homologous recombination to generate a knock-in mouse model with an ADTKD-causing missense cysteine to arginine uromodulin mutation (C125R). Heterozygous and homozygous mutant mice developed reduced uric acid excretion, renal fibrosis, immune cell infiltration and progressive renal failure, with decreased maturation and excretion of uromodulin, due to its retention in the ER. The ER stress marker 78 kDa glucose-regulated protein (GRP78) was elevated in cells expressing mutant uromodulin in heterozygous and homozygous mutant mice, and this was accompanied, both in vivo and ex vivo, by upregulation of two unfolded protein response pathways in primary thick ascending limb cells from homozygous mutant mice. However, this did not lead to an increase in apoptosis in vivo Thus, we have developed a novel mouse model for renal fibrosis, which will be a valuable resource to decipher the mechanisms linking uromodulin mutations with ER stress and renal fibrosis.


Asunto(s)
Estrés del Retículo Endoplásmico , Patrón de Herencia/genética , Enfermedades Renales/patología , Riñón/patología , Animales , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Fibrosis , Células Germinativas/metabolismo , Inflamación/patología , Enfermedades Renales/sangre , Enfermedades Renales/orina , Ratones , Mutación/genética , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada , Regulación hacia Arriba , Uromodulina/metabolismo
17.
JCI Insight ; 2(20)2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29046478

RESUMEN

Loss-of-function mutations of GNA11, which encodes G-protein subunit α11 (Gα11), a signaling partner for the calcium-sensing receptor (CaSR), result in familial hypocalciuric hypercalcemia type 2 (FHH2). FHH2 is characterized by hypercalcemia, inappropriately normal or raised parathyroid hormone (PTH) concentrations, and normal or low urinary calcium excretion. A mouse model for FHH2 that would facilitate investigations of the in vivo role of Gα11 and the evaluation of calcimimetic drugs, which are CaSR allosteric activators, is not available. We therefore screened DNA from > 10,000 mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for GNA11 mutations and identified a Gα11 variant, Asp195Gly (D195G), which downregulated CaSR-mediated intracellular calcium signaling in vitro, consistent with it being a loss-of-function mutation. Treatment with the calcimimetic cinacalcet rectified these signaling responses. In vivo studies showed mutant heterozygous (Gna11+/195G) and homozygous (Gna11195G/195G) mice to be hypercalcemic with normal or increased plasma PTH concentrations and normal urinary calcium excretion. Cinacalcet (30mg/kg orally) significantly reduced plasma albumin-adjusted calcium and PTH concentrations in Gna11+/195G and Gna11195G/195G mice. Thus, our studies have established a mouse model with a germline loss-of-function Gα11 mutation that is representative for FHH2 in humans and demonstrated that cinacalcet can correct the associated abnormalities of plasma calcium and PTH.


Asunto(s)
Cinacalcet/uso terapéutico , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Hipercalcemia/tratamiento farmacológico , Mutación/efectos de los fármacos , Administración Oral , Animales , Calcio/sangre , Calcio/orina , Cinacalcet/administración & dosificación , Modelos Animales de Enfermedad , Etilnitrosourea/farmacología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Modelos Moleculares , Hormona Paratiroidea/sangre , Hormona Paratiroidea/metabolismo , Receptores Sensibles al Calcio/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Albúmina Sérica , Transducción de Señal
18.
JCI Insight ; 2(3): e91103, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28194447

RESUMEN

Heterozygous germline gain-of-function mutations of G-protein subunit α11 (Gα11), a signaling partner for the calcium-sensing receptor (CaSR), result in autosomal dominant hypocalcemia type 2 (ADH2). ADH2 may cause symptomatic hypocalcemia with low circulating parathyroid hormone (PTH) concentrations. Effective therapies for ADH2 are currently not available, and a mouse model for ADH2 would help in assessment of potential therapies. We hypothesized that a previously reported dark skin mouse mutant (Dsk7) - which has a germline hypermorphic Gα11 mutation, Ile62Val - may be a model for ADH2 and allow evaluation of calcilytics, which are CaSR negative allosteric modulators, as a targeted therapy for this disorder. Mutant Dsk7/+ and Dsk7/Dsk7 mice were shown to have hypocalcemia and reduced plasma PTH concentrations, similar to ADH2 patients. In vitro studies showed the mutant Val62 Gα11 to upregulate CaSR-mediated intracellular calcium and MAPK signaling, consistent with a gain of function. Treatment with NPS-2143, a calcilytic compound, normalized these signaling responses. In vivo, NPS-2143 induced a rapid and marked rise in plasma PTH and calcium concentrations in Dsk7/Dsk7 and Dsk7/+ mice, which became normocalcemic. Thus, these studies have established Dsk7 mice, which harbor a germline gain-of-function Gα11 mutation, as a model for ADH2 and have demonstrated calcilytics as a potential targeted therapy.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/genética , Hipercalciuria/tratamiento farmacológico , Hipocalcemia/tratamiento farmacológico , Hipoparatiroidismo/congénito , Mutación , Naftalenos/administración & dosificación , Receptores Acoplados a Proteínas G/metabolismo , Animales , Calcio/sangre , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Hipercalciuria/genética , Hipercalciuria/metabolismo , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipoparatiroidismo/tratamiento farmacológico , Hipoparatiroidismo/genética , Hipoparatiroidismo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Naftalenos/farmacología , Hormona Paratiroidea/sangre , Receptores Sensibles al Calcio
19.
PLoS One ; 11(12): e0167916, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27959934

RESUMEN

Non-syndromic kyphosis is a common disorder that is associated with significant morbidity and has a strong genetic involvement; however, the causative genes remain to be identified, as such studies are hampered by genetic heterogeneity, small families and various modes of inheritance. To overcome these limitations, we investigated 12 week old progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) using phenotypic assessments including dysmorphology, radiography, and dual-energy X-ray absorptiometry. This identified a mouse with autosomal recessive kyphosis (KYLB). KYLB mice, when compared to unaffected littermates, had: thoraco-lumbar kyphosis, larger vertebrae, and increased body length and increased bone area. In addition, female KYLB mice had increases in bone mineral content and plasma alkaline phosphatase activity. Recombination mapping localized the Kylb locus to a 5.5Mb region on chromosome 15A1, which contained 51 genes, including the natriuretic peptide receptor 3 (Npr3) gene. DNA sequence analysis of Npr3 identified a missense mutation, Tyr209Asn, which introduced an N-linked glycosylation consensus sequence. Expression of wild-type NPR3 and the KYLB-associated Tyr209Asn NPR3 mutant in COS-7 cells demonstrated the mutant to be associated with abnormal N-linked glycosylation and retention in the endoplasmic reticulum that resulted in its absence from the plasma membrane. NPR3 is a decoy receptor for C-type natriuretic peptide (CNP), which also binds to NPR2 and stimulates mitogen-activated protein kinase (MAPK) signaling, thereby increasing the number and size of hypertrophic chondrocytes. Histomorphometric analysis of KYLB vertebrae and tibiae showed delayed endochondral ossification and expansion of the hypertrophic zones of the growth plates, and immunohistochemistry revealed increased p38 MAPK phosphorylation throughout the growth plates of KYLB vertebrae. Thus, we established a model of kyphosis due to a novel NPR3 mutation, in which loss of plasma membrane NPR3 expression results in increased MAPK pathway activation, causing elongation of the vertebrae and resulting in kyphosis.


Asunto(s)
Cifosis/genética , Sistema de Señalización de MAP Quinasas , Mutación Missense , Receptores del Factor Natriurético Atrial/genética , Animales , Densidad Ósea , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Etilnitrosourea/toxicidad , Femenino , Glicosilación , Cifosis/metabolismo , Cifosis/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Procesamiento Proteico-Postraduccional , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/metabolismo , Tibia/diagnóstico por imagen , Tibia/metabolismo
20.
J Bone Miner Res ; 31(6): 1207-14, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26818911

RESUMEN

Autosomal dominant hypocalcemia (ADH) is characterized by hypocalcemia, inappropriately low serum parathyroid hormone concentrations and hypercalciuria. ADH is genetically heterogeneous with ADH type 1 (ADH1), the predominant form, being caused by germline gain-of-function mutations of the G-protein coupled calcium-sensing receptor (CaSR), and ADH2 caused by germline gain-of-function mutations of G-protein subunit α-11 (Gα11 ). To date Gα11 mutations causing ADH2 have been reported in only five probands. We investigated a multigenerational nonconsanguineous family, from Iran, with ADH and keratoconus which are not known to be associated, for causative mutations by whole-exome sequencing in two individuals with hypoparathyroidism, of whom one also had keratoconus, followed by cosegregation analysis of variants. This identified a novel heterozygous germline Val340Met Gα11 mutation in both individuals, and this was also present in the other two relatives with hypocalcemia that were tested. Three-dimensional modeling revealed the Val340Met mutation to likely alter the conformation of the C-terminal α5 helix, which may affect G-protein coupled receptor binding and G-protein activation. In vitro functional expression of wild-type (Val340) and mutant (Met340) Gα11 proteins in HEK293 cells stably expressing the CaSR, demonstrated that the intracellular calcium responses following stimulation with extracellular calcium, of the mutant Met340 Gα11 led to a leftward shift of the concentration-response curve with a significantly (p < 0.0001) reduced mean half-maximal concentration (EC50 ) value of 2.44 mM (95% CI, 2.31 to 2.77 mM) when compared to the wild-type EC50 of 3.14 mM (95% CI, 3.03 to 3.26 mM), consistent with a gain-of-function mutation. A novel His403Gln variant in transforming growth factor, beta-induced (TGFBI), that may be causing keratoconus was also identified, indicating likely digenic inheritance of keratoconus and ADH2 in this family. In conclusion, our identification of a novel germline gain-of-function Gα11 mutation, Val340Met, causing ADH2 demonstrates the importance of the Gα11 C-terminal region for G-protein function and CaSR signal transduction. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP , Hipercalciuria , Hipocalcemia , Hipoparatiroidismo/congénito , Mutación Missense , Anciano , Sustitución de Aminoácidos , Familia , Subunidades alfa de la Proteína de Unión al GTP/química , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Hipercalciuria/genética , Hipercalciuria/metabolismo , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipoparatiroidismo/genética , Hipoparatiroidismo/metabolismo , Irán , Masculino , Estructura Secundaria de Proteína , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA