Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Biol ; 17(3): e2006540, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30897078

RESUMEN

Specificity within protein kinase signaling cascades is determined by direct and indirect interactions between kinases and their substrates. While the impact of localization and recruitment on kinase-substrate targeting can be readily assessed, evaluating the relative importance of direct phosphorylation site interactions remains challenging. In this study, we examine the STE20 family of protein serine-threonine kinases to investigate basic mechanisms of substrate targeting. We used peptide arrays to define the phosphorylation site specificity for the majority of STE20 kinases and categorized them into four distinct groups. Using structure-guided mutagenesis, we identified key specificity-determining residues within the kinase catalytic cleft, including an unappreciated role for the kinase ß3-αC loop region in controlling specificity. Exchanging key residues between the STE20 kinases p21-activated kinase 4 (PAK4) and Mammalian sterile 20 kinase 4 (MST4) largely interconverted their phosphorylation site preferences. In cells, a reprogrammed PAK4 mutant, engineered to recognize MST substrates, failed to phosphorylate PAK4 substrates or to mediate remodeling of the actin cytoskeleton. In contrast, this mutant could rescue signaling through the Hippo pathway in cells lacking multiple MST kinases. These observations formally demonstrate the importance of catalytic site specificity for directing protein kinase signal transduction pathways. Our findings further suggest that phosphorylation site specificity is both necessary and sufficient to mediate distinct signaling outputs of STE20 kinases and imply broad applicability to other kinase signaling systems.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Quinasas p21 Activadas/metabolismo , Catálisis , Línea Celular , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Fosforilación/genética , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Quinasas p21 Activadas/genética
2.
Biochem Biophys Res Commun ; 450(1): 723-8, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24950408

RESUMEN

Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for characterizing conformational sampling and dynamics in biological macromolecules. Here we demonstrate that nitroxide spectra collected at frequencies higher than X-band (∼9.5 GHz) have sensitivity to the timescale of motion sampled by highly dynamic intrinsically disordered proteins (IDPs). The 68 amino acid protein IA3, was spin-labeled at two distinct sites and a comparison of X-band, Q-band (35 GHz) and W-band (95 GHz) spectra are shown for this protein as it undergoes the helical transition chemically induced by tri-fluoroethanol. Experimental spectra at W-band showed pronounced line shape dispersion corresponding to a change in correlation time from ∼0.3 ns (unstructured) to ∼0.6 ns (α-helical) as indicated by comparison with simulations. Experimental and simulated spectra at X- and Q-bands showed minimal dispersion over this range, illustrating the utility of SDSL EPR at higher frequencies for characterizing structural transitions and dynamics in IDPs.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas/química , Proteínas/ultraestructura , Conformación Proteica , Coloración y Etiquetado/métodos
3.
Cell Rep ; 36(3): 109416, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289367

RESUMEN

Advances in genetic code expansion have enabled the production of proteins containing site-specific, authentic post-translational modifications. Here, we use a recoded bacterial strain with an expanded genetic code to encode phosphoserine into a human kinase protein. We directly encode phosphoserine into WNK1 (with-no-lysine [K] 1) or WNK4 kinases at multiple, distinct sites, which produced activated, phosphorylated WNK that phosphorylated and activated SPAK/OSR kinases, thereby synthetically activating this human kinase network in recoded bacteria. We used this approach to identify biochemical properties of WNK kinases, a motif for SPAK substrates, and small-molecule kinase inhibitors for phosphorylated SPAK. We show that the kinase inhibitors modulate SPAK substrates in cells, alter cell volume, and reduce migration of glioblastoma cells. Our work establishes a protein-engineering platform technology that demonstrates that synthetically active WNK kinase networks can accurately model cellular systems and can be used more broadly to target networks of phosphorylated proteins for research and discovery.


Asunto(s)
Escherichia coli/metabolismo , Transducción de Señal , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Glioblastoma/patología , Células HEK293 , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad por Sustrato
4.
Nat Commun ; 6: 8130, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26350500

RESUMEN

Biochemical investigation of protein phosphorylation events is limited by inefficient production of the phosphorylated and non-phosphorylated forms of full-length proteins. Here using a genomically recoded strain of E. coli with a flexible UAG codon we produce site-specific serine- or phosphoserine-containing proteins, with purities approaching 90%, from a single recombinant DNA. Specifically, we synthesize human MEK1 kinase with two serines or two phosphoserines, from one DNA template, and demonstrate programmable kinase activity. Programmable protein phosphorylation is poised to help reveal the structural and functional information encoded in the phosphoproteome.


Asunto(s)
Codón de Terminación/genética , Escherichia coli/genética , Genoma Bacteriano/genética , MAP Quinasa Quinasa 1/genética , Fosforilación/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , MAP Quinasa Quinasa 1/biosíntesis , Organismos Modificados Genéticamente , Fosfoserina , Serina
5.
Nat Commun ; 6: 8168, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26350765

RESUMEN

Understanding the functional and structural consequences of site-specific protein phosphorylation has remained limited by our inability to produce phosphoproteins at high yields. Here we address this limitation by developing a cell-free protein synthesis (CFPS) platform that employs crude extracts from a genomically recoded strain of Escherichia coli for site-specific, co-translational incorporation of phosphoserine into proteins. We apply this system to the robust production of up to milligram quantities of human MEK1 kinase. Then, we recapitulate a physiological signalling cascade in vitro to evaluate the contributions of site-specific phosphorylation of mono- and doubly phosphorylated forms on MEK1 activity. We discover that only one phosphorylation event is necessary and sufficient for MEK1 activity. Our work sets the stage for using CFPS as a rapid high-throughput technology platform for direct expression of programmable phosphoproteins containing multiple phosphorylated residues. This work will facilitate study of phosphorylation-dependent structure-function relationships, kinase signalling networks and kinase inhibitor drugs.


Asunto(s)
Sistema Libre de Células , MAP Quinasa Quinasa 1/biosíntesis , Fosfoproteínas/biosíntesis , Fosfoserina/metabolismo , Proteínas Recombinantes/biosíntesis , Western Blotting , Pruebas de Enzimas , Escherichia coli , Proteínas Fluorescentes Verdes , Humanos , MAP Quinasa Quinasa 1/metabolismo , Espectrometría de Masas , Fosfoproteínas/metabolismo , Fosforilación , Biosíntesis de Proteínas , Proteínas Recombinantes/metabolismo
6.
Protein Sci ; 20(1): 150-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21080428

RESUMEN

Electron paramagnetic resonance (EPR) spectroscopy coupled with site-directed spin labeling (SDSL) is a valuable tool for characterizing the mobility and conformational changes of proteins but has seldom been applied to intrinsically disordered proteins (IDPs). Here, IA3 is used as a model system demonstrating SDSL-EPR characterization of conformational changes in small IDP systems. IA3 has 68 amino acids, is unstructured in solution, and becomes α-helical upon addition of the secondary structural stabilizer 2,2,2-trifluoroethanol (TFE). Two single cysteine substitutions, one in the N-terminus (S14C) and one in the C-terminus (N58C), were generated and labeled with three different nitroxide spin labels. The resultant EPR line shapes of each of the labels were compared and each reported changes in mobility upon addition of TFE. Specifically, the spectral line shape parameters h((+1))/h(0), the local tumbling volume (V(L)), and the percent change of the h(₋1) intensity were utilized to quantitatively monitor TFE-induced conformational changes. The values of h((+1)/)h(0) as a function of TFE titration varied in a sigmoidal manner and were fit to a two-state Boltzmann model that provided values for the midpoint of the transition, thus, reporting on the global conformational change of IA3. The other parameters provide site-specific information and show that S14C-SL undergoes a conformational change resulting in more restricted motion than N58C-SL, which is consistent with previously published results obtained by studies using NMR and circular dichroism spectroscopy indicating a higher degree of α-helical propensity of the N-terminal segment of IA3. Overall, the results provide a framework for data analyzes that can be used to study induced unstructured-to-helical conformations in IDPs by SDSL.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Espectroscopía de Resonancia por Spin del Electrón , Óxidos de Nitrógeno/química , Estructura Secundaria de Proteína , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA