Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612777

RESUMEN

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Asunto(s)
Glioblastoma , Glioma , Enfermedad de Parkinson , Humanos , Glioblastoma/genética , Proteínas de la Membrana/genética , Células Endoteliales , Angiogénesis , Glioma/genética , Neuroglía , Neovascularización Patológica/genética
2.
BMC Bioinformatics ; 24(1): 445, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012590

RESUMEN

INTRODUCTION: Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular heterogeneity of solid tumors, which is one of the main obstacles for the development of effective cancer treatments. Such tumors typically contain a mixture of cells with aberrant genomic and transcriptomic profiles affecting specific sub-populations that might have a pivotal role in cancer progression, whose identification eludes bulk RNA-sequencing approaches. We present scMuffin, an R package that enables the characterization of cell identity in solid tumors on the basis of a various and complementary analyses on SC gene expression data. RESULTS: scMuffin provides a series of functions to calculate qualitative and quantitative scores, such as: expression of marker sets for normal and tumor conditions, pathway activity, cell state trajectories, Copy Number Variations, transcriptional complexity and proliferation state. Thus, scMuffin facilitates the combination of various evidences that can be used to distinguish normal and tumoral cells, define cell identities, cluster cells in different ways, link genomic aberrations to phenotypes and identify subtle differences between cell subtypes or cell states. We analysed public SC expression datasets of human high-grade gliomas as a proof-of-concept to show the value of scMuffin and illustrate its user interface. Nevertheless, these analyses lead to interesting findings, which suggest that some chromosomal amplifications might underlie the invasive tumor phenotype and the presence of cells that possess tumor initiating cells characteristics. CONCLUSIONS: The analyses offered by scMuffin and the results achieved in the case study show that our tool helps addressing the main challenges in the bioinformatics analysis of SC expression data from solid tumors.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Análisis de Expresión Génica de una Sola Célula , Neoplasias/genética , Transcriptoma , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
3.
J Cell Biochem ; 118(3): 570-584, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27632571

RESUMEN

Recent studies suggest that human tumors are generated from cancer cells with stem cell (SC) properties. Spontaneously occurring cancers in dogs contain a diversity of cells that like for human tumors suggest that certain canine tumors are also generated from cancer stem cells (CSCs). CSCs, like normal SCs, have the capacity for self-renewal as mammospheres in suspension cultures. To understand how cells with SC properties contribute to canine mammary gland tumor development and progression, comparative analysis between normal SCs and CSCs, obtained from the same individual, is essential. We have utilized the property of sphere formation to develop culture conditions for propagating stem/progenitor cells from canine normal and tumor tissue. We show that cells from dissociated mammospheres retain sphere reformation capacity for several serial passages and have the capacity to generate organoid structures ex situ. Utilizing various culture conditions for passaging SCs and CSCs, fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) were found to positively or negatively regulate mammosphere regeneration, organoid formation, and multi-lineage differentiation potential. The response of FGF2 and EGF on SCs and CSCs was different, with increased FGF2 and EGF self-renewal promoted in SCs and repressed in CSCs. Our protocol for propagating SCs from normal and tumor canine breast tissue will provide new opportunities in comparative mammary gland stem cell analysis between species and anticancer treatment and therapies for dogs. J. Cell. Biochem. 118: 570-584, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Neoplasias Mamarias Animales/metabolismo , Células Madre Neoplásicas/metabolismo , Organoides/metabolismo , Animales , Perros , Femenino , Neoplasias Mamarias Animales/patología , Células Madre Neoplásicas/patología , Organoides/patología , Células Tumorales Cultivadas
4.
Adv Protein Chem Struct Biol ; 141: 299-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960478

RESUMEN

TMEM230 promotes antigen processing, trafficking, and presentation by regulating the endomembrane system of membrane bound organelles (lysosomes, proteosomes and mitochondria) and phagosomes. Activation of the immune system requires trafficking of various cargos between the endomembrane system and cell plasma membrane. The Golgi apparatus is the hub of the endomembrane system and essential for the generation, maintenance, recycling, and trafficking of the components of the endomembrane system itself and immune system. Intracellular trafficking and secretion of immune system components depend on mitochondrial metalloproteins for ATP synthesis that powers motor protein transport of endomembrane cargo. Glycan modifying enzyme genes and motor proteins are essential for the activation of the immune system and trafficking of antigens between the endomembrane system and the plasma membrane. Recently, TMEM230 was identified as co-regulated with RNASET2 in lysosomes and with metalloproteins in various cell types and organelles, including mitochondria in autoimmune diseases. Aberrant metalloproteinase secretion by motor proteins is a major contributor to tissue remodeling of synovial membrane and joint tissue destruction in rheumatoid arthritis (RA) by promoting infiltration of blood vessels, bone erosion, and loss of cartilage by phagocytes. In this study, we identified that specific glycan processing enzymes are upregulated in certain cell types (fibroblast or endothelial cells) that function in destructive tissue remodeling in rheumatoid arthritis compared to osteoarthritis (OA). TMEM230 was identified as a regulator in the secretion of metaloproteinases and heparanase necessary tissue remodeling in OA and RA. In dendritic (DC), natural killer and T cells, TMEM230 was expressed at low or no levels in RA compared to OA. TMEM230 expression in DC likely is necessary for regulatory or helper T cells to maintain tolerance to self-antigens and prevent susceptibility to autoimmune disease. To identify how TMEM230 and the endomembrane system contribute to autoimmunity we investigated, glycan modifying enzymes, metalloproteinases and motor protein genes co-regulated with or regulated by TMEM230 in synovial tissue by analyzing published single cell transcriptomic datasets from RA patient derived synovial tissue.


Asunto(s)
Metaloproteínas , Humanos , Metaloproteínas/metabolismo , Metaloproteínas/genética , Análisis de la Célula Individual , Autoinmunidad , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Perfilación de la Expresión Génica
5.
Adv Protein Chem Struct Biol ; 141: 331-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960479

RESUMEN

We recently identified TMEM230 as a master regulator of the endomembrane system of cells. TMEM230 expression is necessary for promoting motor protein dependent intracellular trafficking of metalloproteins for cellular energy production in mitochondria. TMEM230 is also required for transport and secretion of metalloproteinases for autophagy and phagosome dependent clearance of misfolded proteins, defective RNAs and damaged cells, activities that decline with aging. This suggests that aberrant levels of TMEM230 may contribute to aging and regain of proper levels may have therapeutic applications. The components of the endomembrane system include the Golgi complex, other membrane bound organelles, and secreted vesicles and factors. Secreted cellular components modulate immune response and tissue regeneration in aging. Upregulation of intracellular packaging, trafficking and secretion of endosome components while necessary for tissue homeostasis and normal wound healing, also promote secretion of pro-inflammatory and pro-senescence factors. We recently determined that TMEM230 is co-regulated with trafficked cargo of the endomembrane system, including lysosome factors such as RNASET2. Normal tissue regeneration (in aging), repair (following injury) and aberrant destructive tissue remodeling (in cancer or autoimmunity) likely are regulated by TMEM230 activities of the endomembrane system, mitochondria and autophagosomes. The role of TMEM230 in aging is supported by its ability to regulate the pro-inflammatory secretome and senescence-associated secretory phenotype in tissue cells of patients with advanced age and chronic disease. Identifying secreted factors regulated by TMEM230 in young patients and patients of advanced age will facilitate identification of aging associated targets that aberrantly promote, inhibit or reverse aging. Ex situ culture of patient derived cells for identifying secreted factors in tissue regeneration and aging provides opportunities in developing therapeutic and personalized medicine strategies. Identification and validation of human secreted factors in tissue regeneration requires long-term stabile scaffold culture conditions that are different from those previously reported for cell lines used as cell models for aging. We describe a 3 dimensional (3D) platform utilizing non-biogenic and non-labile poly ε-caprolactone scaffolds that supports maintenance of long-term continuous cultures of human stem cells, in vitro generated 3D organoids and patient derived tissue. Combined with animal component free culture media, non-biogenic scaffolds are suitable for proteomic and glycobiological analyses to identify human factors in aging. Applications of electrospun nanofiber technologies in 3D cell culture allow for ex situ screening and the development of patient personalized therapeutic strategies and predicting their effectiveness in mitigating or promoting aging.


Asunto(s)
Envejecimiento , Organoides , Humanos , Organoides/metabolismo , Envejecimiento/metabolismo , Proteínas de la Membrana/metabolismo , Senescencia Celular , Femenino , Andamios del Tejido/química , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/citología
6.
Adv Protein Chem Struct Biol ; 141: 255-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960477

RESUMEN

Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.


Asunto(s)
Glioma , Gliosis , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Glioma/metabolismo , Glioma/patología , Gliosis/metabolismo , Gliosis/patología , Animales , Receptores de Péptidos
7.
FEBS J ; 288(2): 486-506, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32367652

RESUMEN

In colon cancer, downregulation of the transmembrane heparan sulfate proteoglycan syndecan-1 (Sdc-1) is associated with increased invasiveness, metastasis, and dedifferentiation. As Sdc-1 modulates signaling pathways relevant to stem cell function, we tested the hypothesis that it may regulate a tumor-initiating cell phenotype. Sdc-1 small-interfering RNA knockdown in the human colon cancer cell lines Caco2 and HT-29 resulted in an increased side population (SP), enhanced aldehyde dehydrogenase 1 activity, and higher expression of CD133, LGR5, EPCAM, NANOG, SRY (sex-determining region Y)-box 2, KLF2, and TCF4/TCF7L2. Sdc-1 knockdown enhanced sphere formation, cell viability, Matrigel invasiveness, and epithelial-to-mesenchymal transition-related gene expression. Sdc-1-depleted HT-29 xenograft growth was increased compared to controls. Decreased Sdc-1 expression was associated with an increased activation of ß1-integrins, focal adhesion kinase (FAK), and wingless-type (Wnt) signaling. Pharmacological FAK and Wnt inhibition blocked the enhanced stem cell phenotype and invasive growth. Sequential flow cytometric SP enrichment substantially enhanced the stem cell phenotype of Sdc-1-depleted cells, which showed increased resistance to doxorubicin chemotherapy and irradiation. In conclusion, Sdc-1 depletion cooperatively enhances activation of integrins and FAK, which then generates signals for increased invasiveness and cancer stem cell properties. Our findings may provide a novel concept to target a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence. DATABASES: The GEO accession number of the Affymetrix transcriptomic screening is GSE58751.


Asunto(s)
Neoplasias del Colon/genética , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Sindecano-1/genética , Vía de Señalización Wnt/efectos de los fármacos , Antígeno AC133/genética , Antígeno AC133/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Animales , Benzotiazoles/farmacología , Células CACO-2 , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/metabolismo , Células HT29 , Humanos , Indoles/farmacología , Integrina beta1/genética , Integrina beta1/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Oligopéptidos/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Sulfonamidas/farmacología , Sindecano-1/antagonistas & inhibidores , Sindecano-1/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Front Cell Neurosci ; 15: 703431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867197

RESUMEN

Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12-15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.

9.
ACS Biomater Sci Eng ; 6(6): 3649-3663, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33463182

RESUMEN

Recent studies have suggested that microenvironmental stimuli play a significant role in regulating cellular proliferation and migration, as well as in modulating self-renewal and differentiation processes of mammary cells with stem cell (SCs) properties. Recent advances in micro/nanotechnology and biomaterial synthesis/engineering currently enable the fabrication of innovative tissue culture platforms suitable for maintenance and differentiation of SCs in vitro. Here, we report the design and fabrication of an open microfluidic device (OMD) integrating removable poly(ε-caprolactone) (PCL) based electrospun scaffolds, and we demonstrate that the OMD allows investigation of the behavior of human cells during in vitro culture in real time. Electrospun scaffolds with modified surface topography and chemistry can influence attachment, proliferation, and differentiation of mammary SCs and epigenetic mechanisms that maintain luminal cell identity as a function of specific morphological or biochemical cues imparted by tailor-made fiber post-treatments. Meanwhile, the OMD architecture allows control of cell seeding and culture conditions to collect more accurate and informative in vitro assays. In perspective, integrated systems could be tailor-made to mimic specific physiological conditions of the local microenvironment and then analyze the response from screening specific drugs for more effective diagnostics, long-term prognostics, and disease intervention in personalized medicine.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Diferenciación Celular , Humanos , Microfluídica , Poliésteres
10.
BMC Bioinformatics ; 10 Suppl 12: S8, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19828084

RESUMEN

BACKGROUND: The identification of the organisation and dynamics of molecular pathways is crucial for the understanding of cell function. In order to reconstruct the molecular pathways in which a gene of interest is involved in regulating a cell, it is important to identify the set of genes to which it interacts with to determine cell function. In this context, the mining and the integration of a large amount of publicly available data, regarding the transcriptome and the proteome states of a cell, are a useful resource to complement biological research. RESULTS: We describe an approach for the identification of genes that interact with each other to regulate cell function. The strategy relies on the analysis of gene expression profile similarity, considering large datasets of expression data. During the similarity evaluation, the methodology determines the most significant subset of samples in which the evaluated genes are highly correlated. Hence, the strategy enables the exclusion of samples that are not relevant for each gene pair analysed. This feature is important when considering a large set of samples characterised by heterogeneous experimental conditions where different pools of biological processes can be active across the samples. The putative partners of the studied gene are then further characterised, analysing the distribution of the Gene Ontology terms and integrating the protein-protein interaction (PPI) data. The strategy was applied for the analysis of the functional relationships of a gene of known function, Pyruvate Kinase, and for the prediction of functional partners of the human transcription factor TBX3. In both cases the analysis was done on a dataset composed by breast primary tumour expression data derived from the literature. Integration and analysis of PPI data confirmed the prediction of the methodology, since the genes identified to be functionally related were associated to proteins close in the PPI network. Two genes among the predicted putative partners of TBX3 (GLI3 and GATA3) were confirmed by in vivo binding assays (crosslinking immunoprecipitation, X-ChIP) in which the putative DNA enhancer sequence sites of GATA3 and GLI3 were found to be bound by the Tbx3 protein. CONCLUSION: The presented strategy is demonstrated to be an effective approach to identify genes that establish functional relationships. The methodology identifies and characterises genes with a similar expression profile, through data mining and integrating data from publicly available resources, to contribute to a better understanding of gene regulation and cell function. The prediction of the TBX3 target genes GLI3 and GATA3 was experimentally confirmed.


Asunto(s)
Neoplasias de la Mama/genética , Biología Computacional/métodos , Minería de Datos/métodos , Bases de Datos Genéticas , Femenino , Genes , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
11.
Cell Death Dis ; 9(3): 349, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500381

RESUMEN

Chronic Myeloid Leukemia (CML) is a stem cell cancer that arises when t(9;22) translocation occurs in a hematopoietic stem cells. This event results in the expression of the BCR-ABL1 fusion gene, which codes for a constitutively active tyrosine kinase that is responsible for the transformation of a HSC into a CML stem cell, which then gives rise to a clonal myeloproliferative disease. The introduction of Tyrosine Kinase Inhibitors (TKIs) has revolutionized the management of the disease. However, these drugs do not seem to be able to eradicate the malignancy. Indeed, discontinuation trials (STIM; TWISER; DADI) for those patients who achieved a profound molecular response showed 50% relapsing within 12 months. We performed a comparative analysis on 15 CML patients and one B-ALL patient, between the standard quantitative reverse-transcriptase PCR (qRT-PCR) and our genomic DNA patient-specific quantitative PCR assay (gDNA qPCR). Here we demonstrate that gDNA qPCR is better than standard qRT-PCR in disease monitoring after an average follow-up period of 200 days. Specifically, we statistically demonstrated that DNA negativity is more reliable than RNA negativity in indicating when TKIs therapy can be safely stopped.


Asunto(s)
Proteínas de Fusión bcr-abl/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Anciano , ADN/genética , Femenino , Estudios de Seguimiento , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , ARN Mensajero/genética , Reproducibilidad de los Resultados , Resultado del Tratamiento , Adulto Joven
12.
Methods Mol Biol ; 1235: 243-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25388398

RESUMEN

Mammospheres (MMs) are a model for culturing and maintaining mammary gland stem cells (SCs) or cancer stem cells (CSCs) ex situ. As MMs recapitulate the micro-niche of the mammary gland or a tumor, MMs are a model for studying the properties of SCs or CSCs, and for mapping, isolating, and characterizing the SC/CSC generated lineages. Cancer stem cells share with normal SCs the properties of self-renewal and the capacity to generate all cell types and organ structures of the mammary gland. Analysis of human tumor samples suggests that CSCs are heterogeneous in terms of proliferation and differentiation potential. Mammospheres from CSCs likewise display heterogeneity. This heterogeneity makes analysis of CSC generated MMs challenging. To identify the unique and diverse properties of MM derived CSCs, comparative analysis with MMs obtained from normal SCs is required. Here we present protocols for identifying and enriching cells with SC features from a cancer cell line using the LA7CSCs as a model. A comprehensive and comparative approach for identifying, isolating, and characterizing MMs from SCs and CSCs from human breast is also introduced. In addition, we describe detailed procedures for identifying, isolating, and characterizing mammary gland specific cell types, generated during MM formation.


Asunto(s)
Neoplasias de la Mama/patología , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/patología , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/patología , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Línea Celular Tumoral , Separación Celular/métodos , Femenino , Humanos , Coloración y Etiquetado/métodos
13.
Cytotechnology ; 58(1): 25-32, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19034680

RESUMEN

The cancer stem cell hypothesis posits that tumors are derived from a single cancer-initiating cell with stem cell properties. The task of identifying and characterizing cancer-initiating cells with stem cell properties at the single cell level has proven technically difficult because of the scarcity of the cancer stem cells in the tissue of origin and the lack of specific markers for cancer stem cells. Here we show that a single LA7 cell, derived from rat mammary adenocarcinoma has: the ability to serially re-generate mammospheres in long-term non-adherent cultures, the differentiation potential to generate all the cell lineages of the mammary gland and branched duct-like structures that recapitulate morphologically and functionally the ductal-alveolar-like architecture of the mammary tree. The properties of self-renewal, extensive capacity for proliferation, multi-lineage differentiation and the tubular-like structure formation potential suggest that LA7 cells is a cancer stem model system to study the dynamics of tumor formation at the single cell level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA