Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972447

RESUMEN

Pulmonary fibrosis is a relentlessly progressive and often fatal disease with a paucity of available therapies. Genetic evidence implicates disordered epithelial repair, which is normally achieved by the differentiation of small cuboidal alveolar type 2 (AT2) cells into large, flattened alveolar type 1 (AT1) cells as an initiating event in pulmonary fibrosis pathogenesis. Using models of pulmonary fibrosis in young adult and old mice and a model of adult alveologenesis after pneumonectomy, we show that administration of ISRIB, a small molecule that restores protein translation by EIF2B during activation of the integrated stress response (ISR), accelerated the differentiation of AT2 into AT1 cells. Accelerated epithelial repair reduced the recruitment of profibrotic monocyte-derived alveolar macrophages and ameliorated lung fibrosis. These findings suggest a dysfunctional role for the ISR in regeneration of the alveolar epithelium after injury with implications for therapy.


Asunto(s)
Acetamidas/farmacología , Células Epiteliales Alveolares/efectos de los fármacos , Ciclohexilaminas/farmacología , Proteostasis/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Acetamidas/uso terapéutico , Factores de Edad , Células Epiteliales Alveolares/citología , Animales , Amianto , Bleomicina , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ciclohexilaminas/uso terapéutico , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/fisiología , Ratones , Ratones Endogámicos C57BL , Proteostasis/fisiología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Estrés Fisiológico/efectos de los fármacos
2.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L1084-L1096, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209025

RESUMEN

Alveolar epithelial cell (AEC) apoptosis, arising from mitochondrial dysfunction and mitophagy defects, is important in mediating idiopathic pulmonary fibrosis (IPF). Our group established a role for the mitochondrial (mt) DNA base excision repair enzyme, 8-oxoguanine-DNA glycosylase 1 (mtOGG1), in preventing oxidant-induced AEC mtDNA damage and apoptosis and showed that OGG1-deficient mice have increased lung fibrosis. Herein, we determined whether mice overexpressing the mtOGG1 transgene (mtOgg1tg) are protected against lung fibrosis and whether AEC mtOGG1 preservation of mtDNA integrity mitigates phosphatase and tensin homolog-induced putative kinase 1 (PINK1) deficiency and apoptosis. Compared with wild type (WT), mtOgg1tg mice have diminished asbestos- and bleomycin-induced pulmonary fibrosis that was accompanied by reduced lung and AEC mtDNA damage and apoptosis. Asbestos and H2O2 promote the MLE-12 cell PINK1 deficiency, as assessed by reductions in the expression of PINK1 mRNA and mitochondrial protein expression. Compared with WT, Pink1-knockout (Pink1-KO) mice are more susceptible to asbestos-induced lung fibrosis and have increased lung and alveolar type II (AT2) cell mtDNA damage and apoptosis. AT2 cells from Pink1-KO mice and PINK1-silenced (siRNA) MLE-12 cells have increased mtDNA damage that is augmented by oxidative stress. Interestingly, mtOGG1 overexpression attenuates oxidant-induced MLE-12 cell mtDNA damage and apoptosis despite PINK1 silencing. mtDNA damage is increased in the lungs of patients with IPF as compared with controls. Collectively, these findings suggest that mtOGG1 maintenance of AEC mtDNA is crucial for preventing PINK1 deficiency that promotes apoptosis and lung fibrosis. Given the key role of AEC apoptosis in pulmonary fibrosis, strategies aimed at preserving AT2 cell mtDNA integrity may be an innovative target.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Asbestosis/genética , ADN Glicosilasas/genética , Pulmón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Quinasas/genética , Fibrosis Pulmonar/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Amianto/administración & dosificación , Asbestosis/etiología , Asbestosis/metabolismo , Asbestosis/patología , Bleomicina/administración & dosificación , Daño del ADN , ADN Glicosilasas/deficiencia , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Regulación de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Cultivo Primario de Células , Proteínas Quinasas/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Titanio/administración & dosificación
3.
Eur Respir J ; 55(1)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31601718

RESUMEN

Ontologically distinct populations of macrophages differentially contribute to organ fibrosis through unknown mechanisms.We applied lineage tracing, single-cell RNA sequencing and single-molecule fluorescence in situ hybridisation to a spatially restricted model of asbestos-induced pulmonary fibrosis.We demonstrate that tissue-resident alveolar macrophages, tissue-resident peribronchial and perivascular interstitial macrophages, and monocyte-derived alveolar macrophages are present in the fibrotic niche. Deletion of monocyte-derived alveolar macrophages but not tissue-resident alveolar macrophages ameliorated asbestos-induced lung fibrosis. Monocyte-derived alveolar macrophages were specifically localised to fibrotic regions in the proximity of fibroblasts where they expressed molecules known to drive fibroblast proliferation, including platelet-derived growth factor subunit A. Using single-cell RNA sequencing and spatial transcriptomics in both humans and mice, we identified macrophage colony-stimulating factor receptor (M-CSFR) signalling as one of the novel druggable targets controlling self-maintenance and persistence of these pathogenic monocyte-derived alveolar macrophages. Pharmacological blockade of M-CSFR signalling led to the disappearance of monocyte-derived alveolar macrophages and ameliorated fibrosis.Our findings suggest that inhibition of M-CSFR signalling during fibrosis disrupts an essential fibrotic niche that includes monocyte-derived alveolar macrophages and fibroblasts during asbestos-induced fibrosis.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Fibrosis Pulmonar , Animales , Fibrosis , Humanos , Macrófagos/patología , Macrófagos Alveolares , Ratones , Monocitos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Receptor de Factor Estimulante de Colonias de Macrófagos
4.
JCI Insight ; 6(6)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33600379

RESUMEN

Regulatory T (Treg) cells orchestrate resolution and repair of acute lung inflammation and injury after viral pneumonia. Compared with younger patients, older individuals experience impaired recovery and worse clinical outcomes after severe viral infections, including influenza and SARS coronavirus 2 (SARS-CoV-2). Whether age is a key determinant of Treg cell prorepair function after lung injury remains unknown. Here, we showed that aging results in a cell-autonomous impairment of reparative Treg cell function after experimental influenza pneumonia. Transcriptional and DNA methylation profiling of sorted Treg cells provided insight into the mechanisms underlying their age-related dysfunction, with Treg cells from aged mice demonstrating both loss of reparative programs and gain of maladaptive programs. Strategies to restore youthful Treg cell functional programs could be leveraged as therapies to improve outcomes among older individuals with severe viral pneumonia.


Asunto(s)
Envejecimiento/fisiología , Virus de la Influenza A , Gripe Humana/patología , Pulmón/patología , Neumonía Viral/patología , SARS-CoV-2 , Linfocitos T Reguladores/patología , Factores de Edad , Envejecimiento/metabolismo , Animales , COVID-19/complicaciones , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Humanos , Gripe Humana/complicaciones , Gripe Humana/metabolismo , Gripe Humana/virología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Neumonía Viral/etiología , Neumonía Viral/metabolismo , Neumonía Viral/virología , Linfocitos T Reguladores/metabolismo
5.
Aging Cell ; 19(9): e13180, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32720752

RESUMEN

Skeletal muscle dysfunction in survivors of pneumonia disproportionately affects older individuals in whom it causes substantial morbidity. We found that skeletal muscle recovery was impaired in old compared with young mice after influenza A virus-induced pneumonia. In young mice, recovery of muscle loss was associated with expansion of tissue-resident skeletal muscle macrophages and downregulation of MHC II expression, followed by a proliferation of muscle satellite cells. These findings were absent in old mice and in mice deficient in Cx3cr1. Transcriptomic profiling of tissue-resident skeletal muscle macrophages from old compared with young mice showed downregulation of pathways associated with phagocytosis and proteostasis, and persistent upregulation of inflammatory pathways. Consistently, skeletal muscle macrophages from old mice failed to downregulate MHCII expression during recovery from influenza A virus-induced pneumonia and showed impaired phagocytic function in vitro. Like old animals, mice deficient in the phagocytic receptor Mertk showed no macrophage expansion, MHCII downregulation, or satellite cell proliferation and failed to recover skeletal muscle function after influenza A pneumonia. Our data suggest that a loss of phagocytic function in a CX3CR1+ tissue-resident skeletal muscle macrophage population in old mice precludes satellite cell proliferation and recovery of skeletal muscle function after influenza A pneumonia.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Virus de la Influenza A/patogenicidad , Macrófagos/metabolismo , Músculo Esquelético/fisiopatología , Fagocitosis/fisiología , Neumonía/patología , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA