Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Physiol Endocrinol Metab ; 325(5): E466-E479, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729021

RESUMEN

Exercise training modifies lipid metabolism in skeletal muscle, but the effect of exercise training on intramyocellular lipid droplet (LD) abundance, size, and intracellular distribution in adults with obesity remains elusive. This study compared high-intensity interval training (HIIT) with more conventional moderate-intensity continuous training (MICT) on intramyocellular lipid content, as well as LD characteristics (size and number) and abundance within the intramyofibrillar (IMF) and subsarcolemmal (SS) regions of type I and type II skeletal muscle fibers in adults with obesity. Thirty-six adults with obesity [body mass index (BMI) = 33 ± 3 kg/m2] completed 12 wk (4 days/wk) of either HIIT (10 × 1 min, 90% HRmax + 1-min active recovery; n = 19) or MICT (45-min steady-state exercise, 70% HRmax; n = 17), while on a weight-maintaining diet throughout training. Skeletal muscle biopsies were collected from the vastus lateralis before and after training, and intramyocellular lipid content and intracellular LD distribution were measured by immunofluorescence microscopy. Both MICT and HIIT increased total intramyocellular lipid content by more than 50% (P < 0.01), which was attributed to a greater LD number per µm2 in the IMF region of both type I and type II muscle fibers (P < 0.01). Our findings also suggest that LD lipophagy (autophagy-mediated LD degradation) may be transiently upregulated the day after the last exercise training session (P < 0.02 for both MICT and HIIT). In summary, exercise programs for adults with obesity involving either MICT or HIIT increased skeletal muscle LD abundance via a greater number of LDs in the IMF region of the myocyte, thereby providing more lipid in close proximity to the site of energy production during exercise.NEW & NOTEWORTHY In this study, 12 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) enhanced skeletal muscle lipid abundance by increasing lipid droplet number within the intramyofibrillar (IMF) region of muscle. Because the IMF associates with high energy production during muscle contraction, this adaptation may enhance lipid oxidation during exercise. Despite differences in training intensity and energy expenditure between MICT and HIIT, their effects on muscle lipid abundance and metabolism were remarkably similar.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Gotas Lipídicas , Adulto , Humanos , Obesidad/terapia , Ejercicio Físico/fisiología , Metabolismo Energético/fisiología , Lípidos
2.
J Physiol ; 600(9): 2127-2146, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35249225

RESUMEN

Excessive adipose tissue mass underlies much of the metabolic health complications in obesity. Although exercise training is known to improve metabolic health in individuals with obesity, the effects of exercise training without weight loss on adipose tissue structure and metabolic function remain unclear. Thirty-six adults with obesity (body mass index = 33 ± 3 kg · m-2 ) were assigned to 12 weeks (4 days week-1 ) of either moderate-intensity continuous training (MICT; 70% maximal heart rate, 45 min; n = 17) or high-intensity interval training (HIIT; 90% maximal heart rate, 10 × 1 min; n = 19), maintaining their body weight throughout. Abdominal subcutaneous adipose tissue (aSAT) biopsy samples were collected once before and twice after training (1 day after last exercise and again 4 days later). Exercise training modified aSAT morphology (i.e. reduced fat cell size, increased collagen type 5a3, both P ≤ 0.05, increased capillary density, P = 0.05) and altered protein abundance of factors that regulate aSAT remodelling (i.e. reduced matrix metallopeptidase 9; P = 0.02; increased angiopoietin-2; P < 0.01). Exercise training also increased protein abundance of factors that regulate lipid metabolism (e.g. hormone sensitive lipase and fatty acid translocase; P ≤ 0.03) and key proteins involved in the mitogen-activated protein kinase pathway when measured the day after the last exercise session. However, most of these exercise-mediated changes were no longer significant 4 days after exercise. Importantly, MICT and HIIT induced remarkably similar adaptations in aSAT. Collectively, even in the absence of weight loss, 12 weeks of exercise training induced changes in aSAT structure, as well as factors that regulate metabolism and the inflammatory signal pathway in adults with obesity. KEY POINTS: Exercise training is well-known to improve metabolic health in obesity, although how exercise modifies the structure and metabolic function of adipose tissue, in the absence of weight loss, remains unclear. We report that both 12 weeks of moderate-intensity continuous training (MICT) and 12 weeks of high-intensity interval training (HIIT) induced modifications in adipose tissue structure and factors that regulate adipose tissue remodelling, metabolism and the inflammatory signal pathway in adults with obesity, even without weight loss (with no meaningful differences between MICT and HIIT). The modest modifications in adipose tissue structure in response to 12 weeks of MICT or HIIT did not lead to changes in the rate of fatty acid release from adipose tissue. These results expand our understanding about the effects of two commonly used exercise training prescriptions (MICT and HIIT) on adipose tissue remodelling that may lead to advanced strategies for improving metabolic health outcomes in adults with obesity.


Asunto(s)
Ejercicio Físico , Obesidad , Tejido Adiposo/metabolismo , Adulto , Ejercicio Físico/fisiología , Ácidos Grasos/metabolismo , Humanos , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Pérdida de Peso
3.
Regul Toxicol Pharmacol ; 100: 68-71, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30359700

RESUMEN

ß-Hydroxy-ß-methylbutyrate (HMB) is a leucine metabolite available in calcium salt (CaHMB) and free acid forms as a sports nutrition ergogenic aid. HMB has also been used to support muscle health in the elderly and other populations needing to maintain muscle mass. Several human studies have reported safety data for CaHMB, and rodent sub-chronic toxicity studies have been conducted; however, there are no published genotoxicity studies for HMB. Therefore, three studies (a bacterial reverse mutation test, an in vitro mammalian chromosomal aberration test, and an in vivo mammalian cell micronucleus test) were performed. In the Ames test, no changes in revertant colonies or background were noted with CaHMB concentrations up to 5000 µg per plate, either with or without metabolic activation in five bacterial strains. In the chromosomal aberration test, the number of aberrations associated with up to 2.5 mM CaHMB (long-term) or 10.0 mM (short-term) were similar to those observed for negative controls (<5%), and no polyploidy was observed. Lastly, in the mammalian micronucleus test, no changes in immature erythrocyte or micronuclei frequencies were observed in animals treated with up to 2000 mg·kg-1 body weight CaHMB. In conclusion, CaHMB was determined to have no genotoxic effects.


Asunto(s)
Calcio/toxicidad , Valeratos/toxicidad , Animales , Células de la Médula Ósea/efectos de los fármacos , Línea Celular , Aberraciones Cromosómicas , Cricetulus , Eritrocitos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Masculino , Ratones Endogámicos ICR , Pruebas de Mutagenicidad , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética
4.
Regul Toxicol Pharmacol ; 99: 225-232, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30266239

RESUMEN

2-Hydroxybenzylamine (2-HOBA), a naturally occurring compound found in buckwheat, can protect cells and tissues from oxidative stress. In this study, 2-HOBA acetate was orally administered to male and female rats for 90 consecutive days at doses of 100, 500, and 1000 mg·kg BW-1·d-1 (n = 20 per sex/group). Subchronic administration of 2-HOBA was well tolerated at all dose levels. 2-HOBA-treated male rats were slightly heavier in the last weeks of the study, but this difference was very small (<5%), did not show a dose-response relationship, and was not observed in female rats. Similarly, some statistically significant changes in serum biochemistry and hematology parameters were noted, but these were not considered to be of biological or toxicological significance. Sporadic differences in organ weights were observed between groups, but all were small (<10%) and unlikely to indicate toxicity. The incidence of histopathological lesions was similar between treated and control groups across all organs. Based upon these findings, the no-observed-adverse-effect level was determined to be ≥ 1000 mg·kg BW-1·d-1, which was the highest dose tested. These results further support no toxicity associated with oral consumption of 2-HOBA acetate in rats and the continued development of 2-HOBA as a dietary supplement or functional food.


Asunto(s)
Acetatos/administración & dosificación , Bencilaminas/administración & dosificación , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Wistar , Pruebas de Toxicidad Subcrónica/métodos
5.
Regul Toxicol Pharmacol ; 100: 52-58, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30359704

RESUMEN

2-hydroxybenzylamine (2-HOBA), a naturally occurring compound found in buckwheat, has potential for use as a nutrition supplement due to its ability to protect against the damaging effects of oxidative stress. In a series of rodent toxicity studies, 2-HOBA acetate was well-tolerated and did not produce any toxic effects over 28 or 90 days of repeated oral administration. However, it remained necessary to test the potential toxicity of 2-HOBA acetate in a non-rodent species. In this investigation, 2-HOBA acetate was orally administered to male and female New Zealand White Rabbits for 90 days at doses of 100, 500, and 1000 mg·kg BW-1·day-1 (n = 5 per sex/group). As previously observed in rodents, 2-HOBA acetate administration was well tolerated. No toxic effects of 2-HOBA acetate were detected in body weight, feed consumption, hematology, blood chemistry, urine chemistry, organ weights, gross pathology or histopathology. Based on these findings, the no-observed-adverse-effect-level of 2-HOBA acetate in rabbits was determined to be 1000 mg·kg BW-1·day-1, which was the highest dose tested. These results provide further support for the safety of 2-HOBA acetate administration.


Asunto(s)
Bencilaminas/toxicidad , Administración Oral , Animales , Suplementos Dietéticos , Femenino , Alimentos Funcionales , Masculino , Nivel sin Efectos Adversos Observados , Conejos , Pruebas de Toxicidad Subcrónica
6.
Regul Toxicol Pharmacol ; 98: 190-198, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30075181

RESUMEN

2-hydroxybenzylamine (2-HOBA), a compound naturally found in buckwheat, has been shown to protect cells and tissues from the damaging effects of oxidative stress. The purpose of this report was to evaluate 2-HOBA in preclinical oral rodent toxicity studies. This report includes the results from three oral toxicity studies in rodents: a preliminary 28-day feeding study in mice, a 14-day acute oral toxicity study in rats, and a 28-day repeated dose oral toxicity study in rats. The preliminary mouse feeding study showed no adverse effects of 2-HOBA at concentrations up to 0.456% by weight in feed, but decreased food intake and weight loss were observed at 1.56% 2-HOBA in the diet, likely due to poor palatability. In the acute dosing study, 2000 mg/kg BW 2-HOBA resulted in mortality in one of the six tested female rats, indicating a median lethal dose of 2500 mg/kg BW. In the 28-day repeated oral dose study, small differences were observed between 2-HOBA treated and control group rats, but none of these differences were determined to be of toxicological significance. Together, these studies support the lack of toxicity of oral administration of 2-HOBA acetate at doses up to 1000 mg/kg BW d-1 in rodents.


Asunto(s)
Acetatos/toxicidad , Bencilaminas/toxicidad , Administración Oral , Animales , Femenino , Masculino , Ratones , Ratas Wistar , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subaguda
8.
Obesity (Silver Spring) ; 31(5): 1347-1361, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36988872

RESUMEN

OBJECTIVE: The aims of this study were: 1) to assess relationships among insulin-mediated glucose uptake with standard clinical outcomes and deep-phenotyping measures (including fatty acid [FA] rate of appearance [FA Ra] into the systemic circulation); and 2) to examine the contribution of adipocyte size, fibrosis, and proteomic profile to FA Ra regulation. METHODS: A total of 66 adults with obesity (BMI = 34 [SD 3] kg/m2 ) were assessed for insulin sensitivity (hyperinsulinemic-euglycemic clamp), and stable isotope dilution methods quantified glucose, FA, and glycerol kinetics in vivo. Abdominal subcutaneous adipose tissue (aSAT) and skeletal muscle biopsies were collected, and magnetic resonance imaging quantified liver and visceral fat content. RESULTS: Insulin-mediated FA Ra suppression associated with insulin-mediated glucose uptake (r = 0.51; p < 0.01) and negatively correlated with liver (r = -0.36; p < 0.01) and visceral fat (r = -0.42; p < 0.01). aSAT proteomics from subcohorts of participants with low FA Ra suppression (n = 8) versus high FA Ra suppression (n = 8) demonstrated greater extracellular matrix collagen protein in low versus high FA Ra suppression. Skeletal muscle lipidomics (n = 18) revealed inverse correlations of FA Ra suppression with acyl-chain length of acylcarnitine (r = -0.42; p = 0.02) and triacylglycerol (r = -0.51; p < 0.01), in addition to insulin-mediated glucose uptake (acylcarnitine: r = -0.49; p < 0.01, triacylglycerol: r = -0.40; p < 0.01). CONCLUSIONS: Insulin's ability to suppress FA release from aSAT in obesity is related to enhanced insulin-mediated glucose uptake and metabolic health in peripheral tissues.


Asunto(s)
Resistencia a la Insulina , Insulina , Adulto , Humanos , Insulina/metabolismo , Ácidos Grasos/metabolismo , Proteómica , Obesidad/complicaciones , Tejido Adiposo/metabolismo , Resistencia a la Insulina/fisiología , Triglicéridos/metabolismo , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa
9.
Nutrients ; 14(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364934

RESUMEN

ß-Hydroxy-ß-methylbutyrate (HMB), a leucine metabolite, can increase skeletal muscle size and function. However, HMB may be less effective at improving muscle function in people with insufficient Vitamin D3 (25-OH-D < 30 ng/mL) which is common in middle-aged and older adults. Therefore, we tested the hypothesis that combining HMB plus Vitamin D3 (HMB + D) supplementation would improve skeletal muscle size, composition, and function in middle-aged women. In a double-blinded fashion, women (53 ± 1 yrs, 26 ± 1 kg/m2, n = 43) were randomized to take placebo or HMB + D (3 g Calcium HMB + 2000 IU D per day) during 12 weeks of sedentary behavior (SED) or resistance exercise training (RET). On average, participants entered the study Vitamin D3 insufficient while HMB + D increased 25-OH-D to sufficient levels after 8 and 12 weeks. In SED, HMB + D prevented the loss of arm lean mass observed with placebo. HMB + D increased muscle volume and decreased intermuscular adipose tissue (IMAT) volume in the thigh compared to placebo but did not change muscle function. In RET, 12-weeks of HMB + D decreased IMAT compared to placebo but did not influence the increase in skeletal muscle volume or function. In summary, HMB + D decreased IMAT independent of exercise status and may prevent the loss or increase muscle size in a small cohort of sedentary middle-aged women. These results lend support to conduct a longer duration study with greater sample size to determine the validity of the observed positive effects of HMB + D on IMAT and skeletal muscle in a small cohort of middle-aged women.


Asunto(s)
Colecalciferol , Fuerza Muscular , Humanos , Persona de Mediana Edad , Femenino , Anciano , Colecalciferol/farmacología , Suplementos Dietéticos , Músculo Esquelético , Método Doble Ciego
10.
Trials ; 22(1): 576, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454591

RESUMEN

BACKGROUND: Although catheter ablation is an effective therapy for atrial fibrillation (AF), the most common cardiac arrhythmia encountered in clinical practice, AF ablation generates inflammation and oxidative stress in the early postoperative period predisposing to recurrence of AF. Isolevuglandins (IsoLGs) are reactive lipid mediators of oxidative stress injury that rapidly react with endogenous biomolecules to compromise their function. 2-Hydroxybenzylamine (2-HOBA), a potent small molecule scavenger of IsoLGs, sequesters the reactive species as inert adducts. This mechanism, coupled with reported safety in humans, supports the investigation of 2-HOBA as a novel therapeutic to reduce AF caused by oxidative stress, such as that which occurs after catheter ablation. Accordingly, we seek to test the hypothesis that treatment with 2-HOBA will decrease early recurrence of AF and other atrial arrhythmias following AF ablation by decreasing IsoLG adducts with native biomolecules. METHODS: The proposed trial will randomly assign 162 participants undergoing cryo- or radiofrequency catheter ablation for AF to 2-HOBA (N = 81) or placebo (N = 81). Individuals will begin the study drug 3 days prior to ablation and continue for 28 days. Participants will be given a wearable smartwatch capable of detecting and recording atrial arrhythmias. They will be instructed to record ECGs daily with additional ECGs if they experience symptoms of AF or when alerted by the smartwatch AF detection alarm. The primary clinical endpoint will be an episode of AF, atrial tachycardia, or atrial flutter lasting 30 s or more within 28 days post-AF ablation. Secondary measures will be the change in IsoLG adduct levels from blood samples collected immediately pre-ablation and post-ablation and reduction in AF burden as calculated from the smartwatch. DISCUSSION: The proposed trial will test the hypothesis that 2-HOBA reduces post-ablation atrial arrhythmias through sequestration of reactive IsoLG species. The results of this study may improve the understanding of the role of IsoLGs and oxidative stress in AF pathogenesis and provide evidence to advance 2-HOBA and related compounds as a new therapeutic strategy to treat AF. TRIAL REGISTRATION: ClinicalTrials.gov NCT04433091 . Registered on June 3, 2020.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Preparaciones Farmacéuticas , Dispositivos Electrónicos Vestibles , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/prevención & control , Fibrilación Atrial/cirugía , Bencilaminas , Ablación por Catéter/efectos adversos , Humanos , Recurrencia Local de Neoplasia , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
Med Sci Sports Exerc ; 52(4): 976-982, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31809409

RESUMEN

PURPOSE: This study determined the impact of an exercise-induced energy deficit on postprandial and 24 h glycemic control the day after a session of exercise. METHODS: Fifteen healthy participants (m/f = 5/10, 27 ± 6 yr, body mass index = 24 ± 3 kg·m, peak oxygen consumption [V˙O2peak] = 36 ± 9 mL·kg·min) completed two separate 5-d experimental trials performed under "free-living" conditions. On day 1 of each trial, participants were fitted with a continuous glucose monitor and abstained from exercise. Day 2 served as a nonexercise control (NoEx). On day 3, participants exercised at 3:00 PM (65% V˙O2peak) until they expended 350 kcals (~45 min). The diet during both experimental trials was identical with the exception of meals after this exercise session. During one trial, the dinner after exercise did not replenish the 350 kcal expended during exercise, thereby establishing an exercise energy deficit (ExDEF). During the other experimental trial, the dinner after exercise contained an additional 350 kcal to compensate for the energy expended during exercise, and thereby maintained energy balance after exercise (ExBAL). Free-living glycemia was measured the day before exercise (NoEx) and the day after exercise under ExDEF and ExBAL conditions. RESULTS: The day after exercise, 3 h postprandial area under the curve was lower after breakfast in ExDEF compared with ExBAL (16.0 ± 1.8 vs 17.0 ± 1.6 mmol·L·h per 3 h, P = 0.01), but did not differ between groups after lunch (P = 0.24), dinner (P = 0.39), or evening snack (P = 0.45). Despite differences in the glycemic response to breakfast, 24 h glycemia did not differ between ExDEF and ExBAL (area under the curve = 128 ± 10 vs 131 ± 10 mmol·L·h per 24 h, respectively; P = 0.54). CONCLUSIONS: An exercise-induced energy deficit lowered the glycemic response to breakfast the next day-but this energy deficit did not impact total 24 h glycemia, the day after exercise in metabolically healthy adults.


Asunto(s)
Glucemia/metabolismo , Ingestión de Energía , Ejercicio Físico/fisiología , Periodo Posprandial , Adulto , Índice de Masa Corporal , Metabolismo Energético , Femenino , Humanos , Insulina/sangre , Masculino , Consumo de Oxígeno , Adulto Joven
12.
J Gerontol A Biol Sci Med Sci ; 75(11): 2089-2097, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32857128

RESUMEN

The primary aim of this study was to determine whether supplementation with calcium ß-hydroxy-ß-methylbutyrate (HMB) and vitamin D3 (D) would enhance muscle function and strength in older adults. Older adults over 60 years of age with insufficient circulating 25-hydroxy-vitamin D (25OH-D) levels were enrolled in a double-blinded controlled 12-month study. Study participants were randomly assigned to treatments consisting of: (a) Control + no exercise, (b) HMB+D + no exercise, (c) Control + exercise, and (d) HMB+D + exercise. The study evaluated 117 participants via multiple measurements over the 12 months that included body composition, strength, functionality, and questionnaires. HMB+D had a significant benefit on lean body mass within the nonexercise group at 6 months (0.44 ± 0.27 kg, HMB+D vs -0.33 ± 0.28 kg, control, p < .05). In nonexercisers, improvement in knee extension peak torque (60°/s) was significantly greater in HMB+D-supplemented participants than in the nonsupplemented group (p = .04) at 3 months, 10.9 ± 5.7 Nm and -5.2 ± 5.9 Nm, respectively. A composite functional index, integrating changes in handgrip, Get Up, and Get Up and Go measurements, was developed. HMB+D + no exercise resulted in significant increases in the functional index compared with those observed in the control + no exercise group at 3 (p = .03), 6 (p = .04), and 12 months (p = .04). Supplementation with HMB+D did not further improve the functional index within the exercising group. This study demonstrated the potential of HMB and vitamin D3 supplementation to enhance muscle strength and physical functionality in older adults, even in individuals not engaged in an exercise training program.


Asunto(s)
Calcio/administración & dosificación , Fuerza Muscular/efectos de los fármacos , Entrenamiento de Fuerza , Valeratos/administración & dosificación , Vitamina D/administración & dosificación , Anciano , Composición Corporal , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios
13.
BMC Pharmacol Toxicol ; 21(1): 3, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907026

RESUMEN

BACKGROUND: 2-Hydroxybenzylamine (2-HOBA) is a selective dicarbonyl electrophile scavenger being developed as a nutritional supplement to help protect against the development of conditions associated with dicarbonyl electrophile formation, such as the cognitive decline observed with Mild Cognitive Impairment or Alzheimer's disease. METHODS: This study evaluated the safety, tolerability, and pharmacokinetics of repeated oral doses of 2-HOBA acetate (500 or 750 mg) administered to healthy volunteers every eight hours for two weeks. The effects of 2-HOBA on cyclooxygenase function and cerebrospinal fluid penetrance of 2-HOBA were also investigated. RESULTS: Repeated oral administration of 2-HOBA was found to be safe and well-tolerated up to 750 mg TID for 15 days. 2-HOBA was absorbed within 2 h of administration, had a half-life of 2.10-3.27 h, and an accumulation ratio of 1.38-1.52. 2-HOBA did not interfere with cyclooxygenase function and was found to be present in cerebrospinal fluid 90 min after dosing. CONCLUSIONS: Repeated oral administration of 2-HOBA was found to be safe and well-tolerated. These results support continued development of 2-HOBA as a nutritional supplement. TRIAL REGISTRATION: Studies are registered at ClinicalTrials.gov (NCT03555682 Registered 13 June 2018, NCT03554096 Registered 12 June 18).


Asunto(s)
Bencilaminas/farmacocinética , Suplementos Dietéticos , Administración Oral , Adulto , Bencilaminas/efectos adversos , Bencilaminas/sangre , Bencilaminas/líquido cefalorraquídeo , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
J Clin Endocrinol Metab ; 105(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492705

RESUMEN

OBJECTIVE: We compared the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on insulin sensitivity and other important metabolic adaptations in adults with obesity. METHODS: Thirty-one inactive adults with obesity (age: 31 ±â€…6 years; body mass index: 33 ±â€…3 kg/m2) completed 12 weeks (4 sessions/week) of either HIIT (10 × 1-minute at 90%HRmax, 1-minute active recovery; n = 16) or MICT (45 minutes at 70%HRmax; n = 15). To assess the direct effects of exercise independent of weight/fat loss, participants were required to maintain body mass. RESULTS: Training increased peak oxygen uptake by ~10% in both HIIT and MICT (P < 0.0001), and body weight/fat mass were unchanged. Peripheral insulin sensitivity (hyperinsulinemic-euglycemic clamp) was ~20% greater the day after the final exercise session compared to pretraining (P < 0.01), with no difference between HIIT and MICT. When trained participants abstained from exercise for 4 days, insulin sensitivity returned to pretraining levels in both groups. HIIT and MICT also induced similar increases in abundance of many skeletal muscle proteins involved in mitochondrial respiration and lipid and carbohydrate metabolism. Training-induced alterations in muscle lipid profile were also similar between groups. CONCLUSION: Despite large differences in training intensity and exercise time, 12 weeks of HIIT and MICT induce similar acute improvements in peripheral insulin sensitivity the day after exercise, and similar longer term metabolic adaptations in skeletal muscle in adults with obesity. These findings support the notion that the insulin-sensitizing effects of both HIIT and MICT are mediated by factors stemming from the most recent exercise session(s) rather than adaptations that accrue with training.


Asunto(s)
Ejercicio Físico/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Obesidad/rehabilitación , Adaptación Fisiológica , Adulto , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Conducta Sedentaria , Resultado del Tratamiento , Adulto Joven
15.
BMC Pharmacol Toxicol ; 20(1): 1, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30611293

RESUMEN

BACKGROUND: 2-Hydroxybenzylamine (2-HOBA) is a selective scavenger of dicarbonyl electrophiles that protects proteins and lipids from being modified by these electrophiles. It is currently being developed for use as a nutritional supplement to help maintain good health and protect against the development of conditions associated with dicarbonyl electrophile formation, such as the cognitive decline associated with Mild Cognitive Impairment and Alzheimer's disease. METHODS: In this first-in-human study, the safety, tolerability, and pharmacokinetics of six ascending single oral doses of 2-HOBA acetate were tested in eighteen healthy human volunteers. RESULTS: Reported adverse events were mild and considered unlikely to be related to 2-HOBA. There were no clinically significant changes in vital signs, ECG recordings, or clinical laboratory parameters. 2-HOBA was fairly rapidly absorbed, with a tmax of 1-2 h, and eliminated, with a t1/2 of approximately 2 h. Both tmax and t1/2 were independent of dose level, while Cmax and AUC increased proportionally with dose level. CONCLUSIONS: 2-HOBA acetate was safe and well-tolerated at doses up to 825 mg in healthy human volunteers, positioning it as a good candidate for continued development as a nutritional supplement. TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (NCT03176940).


Asunto(s)
Acetatos/farmacocinética , Bencilaminas/farmacocinética , Suplementos Dietéticos , Fármacos Neuroprotectores/farmacocinética , Acetatos/sangre , Administración Oral , Adulto , Área Bajo la Curva , Bencilaminas/sangre , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Masculino , Fármacos Neuroprotectores/sangre , Adulto Joven
16.
Food Chem Toxicol ; 121: 541-548, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30253245

RESUMEN

2-hydroxybenzylamine (2-HOBA), a compound found in buckwheat, is a potent scavenger of reactive γ-ketoaldehydes, which are increased in diseases associated with inflammation and oxidative stress. While the potential of 2-HOBA is promising, studies were needed to characterize the safety of the compound before clinical trials. In a series of experiments, the risks of 2-HOBA-mediated mutagenicity and cardio-toxicity were assessed in vitro. The effects of 2-HOBA on the mRNA expression of select cytochrome P450 (CYP) enzymes were also assessed in cryopreserved human hepatocytes. Further, the distribution and metabolism of 2-HOBA in blood were determined. Our results indicate that 2-HOBA is not cytotoxic or mutagenic in vitro and does not induce the expression of CYP1A2, CYP2B6, or CYP3A4 in human hepatocytes. The results of the hERG testing showed a low risk of cardiac QT wave prolongation. Plasma protein binding and red blood cell distribution characteristics indicate low protein binding and no preferential distribution into erythrocytes. The major metabolites identified were salicylic acid and the glycoside conjugate of 2-HOBA. Together, these findings support development of 2-HOBA as a nutritional supplement and provide important information for the design of further preclinical safety studies in animals as well as for human clinical trials with 2-HOBA.


Asunto(s)
Bencilaminas/farmacología , Adulto , Proteínas Sanguíneas , Sistema Enzimático del Citocromo P-450/metabolismo , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Eritrocitos/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Mutagenicidad , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA