RESUMEN
Sepsis is a systemic response to infection with life-threatening consequences. Our understanding of the molecular and cellular impact of sepsis across organs remains rudimentary. Here, we characterize the pathogenesis of sepsis by measuring dynamic changes in gene expression across organs. To pinpoint molecules controlling organ states in sepsis, we compare the effects of sepsis on organ gene expression to those of 6 singles and 15 pairs of recombinant cytokines. Strikingly, we find that the pairwise effects of tumor necrosis factor plus interleukin (IL)-18, interferon-gamma or IL-1ß suffice to mirror the impact of sepsis across tissues. Mechanistically, we map the cellular effects of sepsis and cytokines by computing changes in the abundance of 195 cell types across 9 organs, which we validate by whole-mouse spatial profiling. Our work decodes the cytokine cacophony in sepsis into a pairwise cytokine message capturing the gene, cell and tissue responses of the host to the disease.
Asunto(s)
Citocinas , Sepsis , Ratones , Animales , Interleucina-6/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interferón gamma , Sepsis/genéticaRESUMEN
Sepsis is a systemic response to infection with life-threatening consequences. Our understanding of the impact of sepsis across organs of the body is rudimentary. Here, using mouse models of sepsis, we generate a dynamic, organism-wide map of the pathogenesis of the disease, revealing the spatiotemporal patterns of the effects of sepsis across tissues. These data revealed two interorgan mechanisms key in sepsis. First, we discover a simplifying principle in the systemic behavior of the cytokine network during sepsis, whereby a hierarchical cytokine circuit arising from the pairwise effects of TNF plus IL-18, IFN-γ, or IL-1ß explains half of all the cellular effects of sepsis on 195 cell types across 9 organs. Second, we find that the secreted phospholipase PLA2G5 mediates hemolysis in blood, contributing to organ failure during sepsis. These results provide fundamental insights to help build a unifying mechanistic framework for the pathophysiological effects of sepsis on the body.
RESUMEN
Drug resistance remains a major clinical problem despite advances in targeted therapies. In recent years, methods to culture cancer cells in three-dimensional (3D) environments to better mimic native tumors have gained increasing popularity. Nevertheless, unlike traditional two-dimensional (2D) cell cultures, analysis of 3D cultures is not straightforward. Most biochemical assays developed for 2D cultures have to be optimized for use with 3D cultures. We addressed this important problem by presenting a simple method of quantitative size-based analysis of growth and drug responses of 3D cultures of cancer cells as tumor spheroids. We used an aqueous two-phase system to form consistently sized tumor spheroids of colorectal cancer cells. Using spheroid images, we computed the size of spheroids over time and demonstrated that growth of spheroids from this analysis strongly correlates with that using a PrestoBlue biochemical assay optimized for 3D cultures. Next, we cyclically treated the tumor spheroids with a MEK inhibitor, trametinib, for 6-day periods with a recovery phase in between. This inhibitor was selected because of mutation of colon cancer cells in the MEK/ERK pathway. We used size measurements to evaluate the efficacy of trametinib and predict development of resistance of colon cancer cells during the cyclical treatment and recovery regimen. This size-based analysis closely matched the biochemical analysis of drug responses of spheroids. We performed molecular analysis and showed that resistance to trametinib emerged due to feedback activation of the PI3K/AKT signaling pathway. Therefore, we combined trametinib with a PI3K/AKT inhibitor, dactolisib, and demonstrated that size-based analysis of spheroids reliably allowed quantifying the effect of the combination treatment to prevent drug resistance. This study established that size measurements of spheroids can be used as a straightforward method for quantitative studies of drug responses of tumor spheroids and identifying drug combinations that block resistance.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/química , Neoplasias Colorrectales/tratamiento farmacológico , Imidazoles/farmacología , Piridonas/farmacología , Pirimidinonas/farmacología , Quinolinas/farmacología , Esferoides Celulares/química , Esferoides Celulares/efectos de los fármacos , Neoplasias Colorrectales/patología , Combinación de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Tamaño de la Partícula , Esferoides Celulares/patología , Células Tumorales CultivadasRESUMEN
Tumor stroma is a major contributor to the biological aggressiveness of cancer cells. Cancer cells induce activation of normal fibroblasts to carcinoma-associated fibroblasts (CAFs), which promote survival, proliferation, metastasis, and drug resistance of cancer cells. A better understanding of these interactions could lead to new, targeted therapies for cancers with limited treatment options, such as triple negative breast cancer (TNBC). To overcome limitations of standard monolayer cell cultures and xenograft models that lack tumor complexity and/or human stroma, we have developed a high throughput tumor spheroid technology utilizing a polymeric aqueous two-phase system to conveniently model interactions of CAFs and TNBC cells and quantify effects on signaling and drug resistance of cancer cells. We focused on signaling by chemokine CXCL12, a hallmark molecule secreted by CAFs, and receptor CXCR4, a driver of tumor progression and metastasis in TNBC. Using three-dimensional stromal-TNBC cells cultures, we demonstrate that CXCL12 - CXCR4 signaling significantly increases growth of TNBC cells and drug resistance through activation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. Despite resistance to standard chemotherapy, upregulation of MAPK and PI3K signaling sensitizes TNBC cells in co-culture spheroids to specific inhibitors of these kinase pathways. Furthermore, disrupting CXCL12 - CXCR4 signaling diminishes drug resistance of TNBC cells in co-culture spheroid models. This work illustrates the capability to identify mechanisms of drug resistance and overcome them using our engineered model of tumor-stromal interactions.