Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(20): 207701, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36462010

RESUMEN

The competition between the Kondo correlation and superconductivity in quantum-dot Josephson junctions (QDJJs) has been known to drive a quantum phase transition between 0 and π junctions. Theoretical studies so far have predicted that under strong Coulomb correlations the 0-π transition should go through intermediate states, 0^{'} and π^{'} phases. By combining a nonperturbative numerical method and the resistively shunted junction model, we investigated the magnetic-field-driven phase transition of the QDJJs in the Kondo regime and found that the low-field magnetotransport exhibits a unique feature which can be used to distinguish the intermediate phases. In particular, the magnetic-field driven π^{'}-π transition is found to lead to the enhancement of the supercurrent which is strongly related to the Kondo effect.

2.
Phys Chem Chem Phys ; 24(26): 15860-15870, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758058

RESUMEN

We explore the physics of topological lattice models immersed in c-QED architectures for arbitrary coupling strength with the photon field. We propose the use of the cavity transmission as a topological marker and study its behaviour. For this, we develop an approach combining the input-output formalism with a Mean-Field plus fluctuations description of the setup. We illustrate our results with the specific case of a fermionic Su-Schrieffer-Heeger (SSH) chain coupled to a single-mode cavity. Our findings confirm that the cavity can indeed act as a quantum sensor for topological phases, where the initial state preparation plays a crucial role. Additionally, we discuss the persistence of topological features when the coupling strength increases, in terms of an effective Hamiltonian, and calculate the entanglement entropy. Our approach can be applied to other fermionic systems, opening a route to the characterization of their topological properties in terms of experimental observables.

3.
Phys Rev Lett ; 123(12): 120602, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31633942

RESUMEN

If an open quantum system is periodically driven with high frequency and the driving commutes with the system-bath coupling operator, it is known that the system approaches a Floquet-Gibbs state, a generalization of Gibbs states to periodically driven systems. Here, we investigate the stationary state of an ac-driven system when the driving and dissipation are noncommutative. Then, the resulting stationary state does not obey the Floquet-Gibbs distribution, and the system dynamics is determined by inelastic scattering processes of the driving field. Based on the Floquet-Redfield formalism, we show that the probability distribution can exhibit population inversion and discontinuities, i.e., jumps, for parameters at which coherent destruction of tunneling takes place. These discontinuities can be observed as intensity jumps in the emission into the bath.

4.
Phys Rev Lett ; 123(12): 126401, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31633970

RESUMEN

We propose a driving protocol which allows us to use quantum dot arrays as quantum simulators for 1D topological phases. We show that by driving the system out of equilibrium, one can imprint bond order in the lattice (producing structures such as dimers, trimers, etc.) and selectively modify the hopping amplitudes at will. Our driving protocol also allows for the simultaneous suppression of all the undesired hopping processes and the enhancement of the necessary ones, enforcing certain key symmetries which provide topological protection. In addition, we have discussed its implementation in a 12-QD array with two interacting electrons and found correlation effects in their dynamics, when configurations with different number of edge states are considered.

5.
Nanotechnology ; 29(50): 505201, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30207549

RESUMEN

Charge, spin and quantum states transfer in solid state devices is an important issue in quantum information. Adiabatic protocols, such as coherent transfer by adiabatic passage have been proposed for direct charge transfer, also denoted as long-range transfer, between the outer dots in a QD array without occupying the intermediate ones. However adiabatic protocols are prone to decoherence. With the aim of achieving direct charge transfer between the outer dots of a QD array with high fidelity, we propose a protocol to speed up the adiabatic transfer, in order to increase the fidelity of the process. Based on adiabaticity shortcuts, by properly engineering the pulses, fast adiabatic-like direct charge transfer between the outer dots can be obtained. We also discuss the impact of transfer fidelity on the operation time in the presence of dephasing. The proposed protocols for accelerating long-range charge and state transfer in a QD array offer a robust mechanism for quantum information transfer, by minimizing the decoherence and relaxation processes.

6.
Nanotechnology ; 27(45): 454002, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27727150

RESUMEN

We analyze an AC-driven dimer chain connected to a strongly biased electron source and drain. It turns out that the resulting transport exhibits fingerprints of topology. They are particularly visible in the driving-induced current suppression and the Fano factor. Thus, shot noise measurements provide a topological phase diagram as a function of the driving parameters. The observed phenomena can be explained physically by a mapping to an effective time-independent Hamiltonian and the emergence of edge states. Moreover, by considering quantum dissipation, we determine the requirements for the coherence properties in a possible experimental realization. For the computation of the zero-frequency noise, we develop an efficient method based on matrix-continued fractions.

7.
Phys Rev Lett ; 110(3): 036802, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23373941

RESUMEN

We propose steady-state electron transport based on coherent transfer by adiabatic passage (CTAP) in a linearly arranged triple quantum dot with leads attached to the outer dots. Its main feature is repeated steering of single electrons from the first dot to the last dot without relevant occupation of the middle dot. The coupling to leads enables a steady-state current, whose shot noise is significantly suppressed provided that the CTAP protocol performs properly. This represents an indication for the direct transfer between spatially separated dots and, thus, may resolve the problem of finding experimental evidence for the nonoccupation of the middle dot.

8.
Phys Rev Lett ; 111(19): 197202, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24266485

RESUMEN

We demonstrate the transition of a coupled electron shuttle from a stable to a strongly nonlinear response at room temperature. Within this transition we observe the coupled shuttle's response to change from Coulomb controlled to conventional field emission. This parametric process is fully reversible and occurs within a broad frequency range. In combination, the large current and wide frequency band enable energy harvesting applications. The experimental data and the numerical calculations both indicate that the source of the nonlinearity is given by the electromechanical coupling of electron shuttling.

9.
Phys Rev E ; 108(4-1): 044118, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978645

RESUMEN

Tissue dynamics and collective cell motion are crucial biological processes. Their biological machinery is mostly known, and simulation models such as the active vertex model exist and yield reasonable agreement with experimental observations such as tissue fluidization or fingering. However, a good and well-founded continuum description for tissues remains to be developed. In this work, we derive a macroscopic description for a two-dimensional cell monolayer by coarse-graining the vertex model through the Poisson bracket approach. We obtain equations for cell density, velocity, and the cellular shape tensor. We then study the homogeneous steady states, their stability (which coincides with thermodynamic stability), and especially their behavior under an externally applied shear. Our results contribute to elucidate the interplay between flow and cellular shape. The obtained macroscopic equations present a good starting point for adding cell motion, morphogenetic, and other biologically relevant processes.

10.
Sci Rep ; 12(1): 5157, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338184

RESUMEN

We theoretically analyze the rise of photovoltage oscillations in hexagonal boron-nitride (h-BN) encapsulated monolayer graphene (h-BN/graphene/h-BN) when irradiated with terahertz radiation. We use an extension of the radiation-driven electron orbit model, successfully applied to study the oscillations obtained in irradiated magnetotransport of GaAs/AlGaAs heterostructures. The extension takes mainly into account that now the carriers are massive Dirac fermions. Our simulations reveal that the photovoltage in these graphene systems presents important oscillations similar to the ones of irradiated magnetoresistance in semiconductor platforms but in the terahertz range. We also obtain that these oscillations are clearly affected by the voltages applied to the sandwiched graphene: a vertical gate voltage between the two hBN layers and an external positive voltage applied to one of the sample sides. The former steers the carrier effective mass and the latter the photovoltage intensity and the oscillations amplitude. The frequency dependence of the photo-oscillations is also investigated.

11.
Nanotechnology ; 21(31): 315401, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20622297

RESUMEN

Magnetoabsorption and microwave-induced resistance oscillations in two-dimensional electron systems are calculated with the same theoretical approach, the microwave-driven Larmor orbit model. This theory, which first was developed to obtain microwave-induced zero resistance states and resistance oscillations, permits us also to calculate the microwave magnetoabsorption. We study the influence of temperature on magnetoabsorption, obtaining a progressive quenching of the absorption peak as temperature increases. We compare this quenching with the similar behavior that the microwave-induced magnetoresistance oscillations present. This quenching is explained in terms of electron-acoustic phonons scattering for both effects.

12.
J Phys Condens Matter ; 27(41): 415801, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26413837

RESUMEN

We report on a theoretical study about the microwave-induced resistance oscillations and zero resistance states when dealing with p-type semiconductors and holes instead of electrons. We consider a high-mobility two-dimensional hole gas hosted in a pure Ge/SiGe quantum well. Similarly to electrons we obtain radiation-induced resistance oscillations and zero resistance states. We analytically deduce a universal expression for the irradiated magnetoresistance, explaining the origin of the minima positions and their 1/4 cycle phase shift. The outcome is that these phenomena are universal and only depend on radiation and cyclotron frequencies. We also study the possibility of having simultaneously two different carriers driven by radiation: light and heavy holes. As a result the calculated magnetoresistance reveals an interference profile due to the different effective masses of the two types of carriers.

13.
Phys Rev Lett ; 98(14): 146805, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17501303

RESUMEN

We study a two-level quantum dot embedded in a phonon bath and irradiated by a time-dependent ac field, and develop a method that allows us to extract simultaneously the full counting statistics of the electronic tunneling and relaxation (by phononic emission) events as well as their correlation. We find that the quantum noise of both the transmitted electrons and the emitted phonons can be controlled by the manipulation of external parameters such as the driving field intensity or the bias voltage.

14.
Phys Rev Lett ; 94(10): 107202, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15783515

RESUMEN

We propose and analyze a new scheme of realizing both spin filtering and spin pumping by using ac-driven double quantum dots in the Coulomb blockade regime. By calculating the current through the system in the sequential tunneling regime, we demonstrate that the spin polarization of the current can be controlled by tuning the parameters (amplitude and frequency) of the ac field. We also discuss spin relaxation and decoherence effects in the pumped current.

15.
Phys Rev Lett ; 89(13): 136802, 2002 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-12225046

RESUMEN

We theoretically study the nonequilibrium transport properties of double quantum dots, in both series and parallel configurations. Our results lead to novel experimental predictions that unambiguously signal the transition from a Kondo state to an antiferromagnetic spin-singlet state, directly reflecting the physics of the two-impurity Kondo problem. We prove that the nonlinear conductance through parallel dots directly measures the exchange constant J between the spins of the dots. In serial dots, the nonlinear conductance provides an upper bound on J.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA