Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(11): 2021-2032, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36788028

RESUMEN

Recovery of motor function after stroke is accompanied by reorganization of movement representations in spared cortical motor regions. It is widely assumed that map reorganization parallels recovery, suggesting a causal relationship. We examined this assumption by measuring changes in motor representations in eight male and six female squirrel monkeys in the first few weeks after injury, a time when motor recovery is most rapid. Maps of movement representations were derived using intracortical microstimulation techniques in primary motor cortex (M1), ventral premotor cortex (PMv), and dorsal premotor cortex (PMd) in 14 adult squirrel monkeys before and after a focal infarct in the M1 distal forelimb area. Maps were derived at baseline and at either 2 (n = 7) or 3 weeks (n = 7) postinfarct. In PMv the forelimb maps remained unchanged at 2 weeks but contracted significantly (-42.4%) at 3 weeks. In PMd the forelimb maps expanded significantly (+110.6%) at 2 weeks but contracted significantly (-57.4%) at 3 weeks. Motor deficits were equivalent at both time points. These results highlight two features of plasticity after M1 lesions. First, significant contraction of distal forelimb motor maps in both PMv and PMd is evident by 3 weeks. Second, an unpredictable nonlinear pattern of reorganization occurs in the distal forelimb representation in PMd, first expanding at 2 weeks, and then contracting at 3 weeks postinjury. Together with previous results demonstrating reliable map expansions in PMv several weeks to months after M1 injury, the subacute time period may represent a critical window for the timing of therapeutic interventions.SIGNIFICANCE STATEMENT The relationship between motor recovery and motor map reorganization after cortical injury has rarely been examined in acute/subacute periods. In nonhuman primates, premotor maps were examined at 2 and 3 weeks after injury to primary motor cortex. Although maps are known to expand late after injury, the present study demonstrates early map expansion at 2 weeks (dorsal premotor cortex) followed by contraction at 3 weeks (dorsal and ventral premotor cortex). This nonlinear map reorganization during a time of gradual behavioral recovery suggests that the relationship between map plasticity and motor recovery is much more complex than previously thought. It also suggests that rehabilitative motor training may have its most potent effects during this early dynamic phase of map reorganization.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Animales , Femenino , Masculino , Corteza Motora/fisiología , Saimiri , Accidente Cerebrovascular/patología , Movimiento/fisiología , Infarto/patología
2.
Magn Reson Med ; 90(6): 2432-2442, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37427535

RESUMEN

PURPOSE: [13 C]Bicarbonate formation from hyperpolarized [1-13 C]pyruvate via pyruvate dehydrogenase, a key regulatory enzyme, represents the cerebral oxidation of pyruvate and the integrity of mitochondrial function. The present study is to characterize the chronology of cerebral mitochondrial metabolism during secondary injury associated with acute traumatic brain injury (TBI) by longitudinally monitoring [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate in rodents. METHODS: Male Wistar rats were randomly assigned to undergo a controlled-cortical impact (CCI, n = 31) or sham surgery (n = 22). Seventeen of the CCI and 9 of the sham rats longitudinally underwent a 1 H/13 C-integrated MR protocol that includes a bolus injection of hyperpolarized [1-13 C]pyruvate at 0 (2 h), 1, 2, 5, and 10 days post-surgery. Separate CCI and sham rats were used for histological validation and enzyme assays. RESULTS: In addition to elevated lactate, we observed significantly reduced bicarbonate production in the injured site. Unlike the immediate appearance of hyperintensity on T2 -weighted MRI, the contrast of bicarbonate signals between the injured region and the contralateral brain peaked at 24 h post-injury, then fully recovered to the normal level at day 10. A subset of TBI rats demonstrated markedly increased bicarbonate in normal-appearing contralateral brain regions post-injury. CONCLUSION: This study demonstrates that aberrant mitochondrial metabolism occurring in acute TBI can be monitored by detecting [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate, suggesting that [13 C]bicarbonate is a sensitive in-vivo biomarker of the secondary injury processes.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Ratas , Masculino , Animales , Ácido Pirúvico/metabolismo , Bicarbonatos/metabolismo , Ratas Wistar , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Mitocondrias/metabolismo , Isótopos de Carbono
3.
Proc Natl Acad Sci U S A ; 117(9): 4983-4993, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32051245

RESUMEN

Lymphocytes infiltrate the stroke core and penumbra and often exacerbate cellular injury. B cells, however, are lymphocytes that do not contribute to acute pathology but can support recovery. B cell adoptive transfer to mice reduced infarct volumes 3 and 7 d after transient middle cerebral artery occlusion (tMCAo), independent of changing immune populations in recipient mice. Testing a direct neurotrophic effect, B cells cocultured with mixed cortical cells protected neurons and maintained dendritic arborization after oxygen-glucose deprivation. Whole-brain volumetric serial two-photon tomography (STPT) and a custom-developed image analysis pipeline visualized and quantified poststroke B cell diapedesis throughout the brain, including remote areas supporting functional recovery. Stroke induced significant bilateral B cell diapedesis into remote brain regions regulating motor and cognitive functions and neurogenesis (e.g., dentate gyrus, hypothalamus, olfactory areas, cerebellum) in the whole-brain datasets. To confirm a mechanistic role for B cells in functional recovery, rituximab was given to human CD20+ (hCD20+) transgenic mice to continuously deplete hCD20+-expressing B cells following tMCAo. These mice experienced delayed motor recovery, impaired spatial memory, and increased anxiety through 8 wk poststroke compared to wild type (WT) littermates also receiving rituximab. B cell depletion reduced stroke-induced hippocampal neurogenesis and cell survival. Thus, B cell diapedesis occurred in areas remote to the infarct that mediated motor and cognitive recovery. Understanding the role of B cells in neuronal health and disease-based plasticity is critical for developing effective immune-based therapies for protection against diseases that involve recruitment of peripheral immune cells into the injured brain.


Asunto(s)
Encéfalo/metabolismo , Movimiento Celular/fisiología , Neurogénesis/fisiología , Recuperación de la Función/fisiología , Accidente Cerebrovascular/metabolismo , Inmunidad Adaptativa , Animales , Linfocitos B/metabolismo , Encéfalo/patología , Cognición , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Humanos , Infarto de la Arteria Cerebral Media , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal , Neuronas/metabolismo
4.
J Neurosci ; 40(14): 2943-2959, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32122952

RESUMEN

Piccolo, a presynaptic active zone protein, is best known for its role in the regulated assembly and function of vertebrate synapses. Genetic studies suggest a further link to several psychiatric disorders as well as Pontocerebellar Hypoplasia type 3 (PCH3). We have characterized recently generated Piccolo KO (Pclogt/gt ) rats. Analysis of rats of both sexes revealed a dramatic reduction in brain size compared with WT (Pclowt/wt ) animals, attributed to a decrease in the size of the cerebral cortical, cerebellar, and pontine regions. Analysis of the cerebellum and brainstem revealed a reduced granule cell layer and a reduction in size of pontine nuclei. Moreover, the maturation of mossy fiber afferents from pontine neurons and the expression of the α6 GABAA receptor subunit at the mossy fiber-granule cell synapse are perturbed, as well as the innervation of Purkinje cells by cerebellar climbing fibers. Ultrastructural and functional studies revealed a reduced size of mossy fiber boutons, with fewer synaptic vesicles and altered synaptic transmission. These data imply that Piccolo is required for the normal development, maturation, and function of neuronal networks formed between the brainstem and cerebellum. Consistently, behavioral studies demonstrated that adult Pclogt/gt rats display impaired motor coordination, despite adequate performance in tasks that reflect muscle strength and locomotion. Together, these data suggest that loss of Piccolo function in patients with PCH3 could be involved in many of the observed anatomical and behavioral symptoms, and that the further analysis of these animals could provide fundamental mechanistic insights into this devastating disorder.SIGNIFICANCE STATEMENT Pontocerebellar Hypoplasia Type 3 is a devastating developmental disorder associated with severe developmental delay, progressive microcephaly with brachycephaly, optic atrophy, seizures, and hypertonia with hyperreflexia. Recent genetic studies have identified non-sense mutations in the coding region of the PCLO gene, suggesting a functional link between this disorder and the presynaptic active zone. Our analysis of Piccolo KO rats supports this hypothesis, formally demonstrating that anatomical and behavioral phenotypes seen in patients with Pontocerebellar Hypoplasia Type 3 are also exhibited by these Piccolo deficient animals.


Asunto(s)
Cerebelo/metabolismo , Cerebelo/patología , Cerebelo/fisiopatología , Proteínas del Citoesqueleto/metabolismo , Neuropéptidos/metabolismo , Atrofias Olivopontocerebelosas , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Masculino , Fenotipo , Ratas
5.
J Neurosci ; 40(5): 1162-1173, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31889008

RESUMEN

Recovery after stroke is a multicellular process encompassing neurons, resident immune cells, and brain-invading cells. Stroke alters the gut microbiome, which in turn has considerable impact on stroke outcome. However, the mechanisms underlying gut-brain interaction and implications for long-term recovery are largely elusive. Here, we tested the hypothesis that short-chain fatty acids (SCFAs), key bioactive microbial metabolites, are the missing link along the gut-brain axis and might be able to modulate recovery after experimental stroke. SCFA supplementation in the drinking water of male mice significantly improved recovery of affected limb motor function. Using in vivo wide-field calcium imaging, we observed that SCFAs induced altered contralesional cortex connectivity. This was associated with SCFA-dependent changes in spine and synapse densities. RNA sequencing of the forebrain cortex indicated a potential involvement of microglial cells in contributing to the structural and functional remodeling. Further analyses confirmed a substantial impact of SCFAs on microglial activation, which depended on the recruitment of T cells to the infarcted brain. Our findings identified that microbiota-derived SCFAs modulate poststroke recovery via effects on systemic and brain resident immune cells.SIGNIFICANCE STATEMENT Previous studies have shown a bidirectional communication along the gut-brain axis after stroke. Stroke alters the gut microbiota composition, and in turn, microbiota dysbiosis has a substantial impact on stroke outcome by modulating the immune response. However, until now, the mediators derived from the gut microbiome affecting the gut-immune-brain axis and the molecular mechanisms involved in this process were unknown. Here, we demonstrate that short-chain fatty acids, fermentation products of the gut microbiome, are potent and proregenerative modulators of poststroke neuronal plasticity at various structural levels. We identified that this effect was mediated via circulating lymphocytes on microglial activation. These results identify short-chain fatty acids as a missing link along the gut-brain axis and as a potential therapeutic to improve recovery after stroke.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Ácidos Grasos Volátiles/administración & dosificación , Accidente Cerebrovascular/inmunología , Animales , Encéfalo/metabolismo , Femenino , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/inmunología , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/metabolismo , Transcriptoma/efectos de los fármacos
6.
Brain Behav Immun ; 95: 502-513, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33964435

RESUMEN

OBJECTIVE: Stroke is a debilitating disorder with significant annual mortality and morbidity rates worldwide. Immune cells are recruited to the injured brain within hours after stroke onset and can exhibit either protective or detrimental effects on recovery. However, immune cells, including CD8 T cells, persist in the injured brain for weeks, suggesting a longer-term role for the adaptive immune system during functional recovery. The aim of this study was to determine if the delayed secondary diapedesis of CD8 T cells into the ischemic brain negatively impacts functional recovery after transient ischemic stroke in male mice. RESULTS: Mice exhibited an increased number of leukocytes in the ipsilesional hemispheres at 14 days (3-fold; p < 0.001) and 30 days (2.2-fold; p = 0.02) after transient middle cerebral artery occlusion (tMCAo) compared to 8 days post-tMCAo, at which time acute neuroinflammation predominantly resolves. Moreover, mice with higher ipsilesional CD8 T cells at 30 days (R2 = 0.52, p < 0.01) exhibited worse functional recovery. To confirm a detrimental role of chronic CD8 T cell diapedesis on recovery, peripheral CD8 T cells were depleted beginning 10 days post-tMCAo. Delayed CD8 T cell depletion improved motor recovery on the rotarod (F(1,28) = 4.264; p = 0.048) compared to isotype control-treated mice. CD8 T cell-depleted mice also exhibited 2-fold (p < 0.001) reduced leukocyte infiltration at 30 days post-tMCAo. Specifically, macrophage, neutrophil, and CD4 T cell numbers were reduced in the ipsilesional hemisphere of the CD8 T cell-depleted mice independent of inflammatory status of the post-stroke CNS (e.g. microglial phenotype and cytokine production). RNAseq identified a unique profile for brain infiltrating CD8 T cells at 30 days post-tMCAo, with 46 genes differentially expressed relative to CD8 T cells at 3 days post-tMCAo. CONCLUSION: Our data reveal a role for CD8 T cells in the chronic phase post-stroke that can be therapeutically targeted. We demonstrate long-term CD8 T cell recruitment into the ipsilesional hemisphere that affects both immune cell numbers present in the injured brain and functional recovery through one month after stroke onset.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Linfocitos T CD8-positivos , Infarto de la Arteria Cerebral Media , Masculino , Ratones , Ratones Endogámicos C57BL , Migración Transendotelial y Transepitelial
7.
Nat Methods ; 14(2): 160-166, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27941784

RESUMEN

The precise manipulation of microcirculation in mice can facilitate mechanistic studies of brain injury and repair after ischemia, but this manipulation remains a technical challenge, particularly in conscious mice. We developed a technology that uses micromagnets to induce aggregation of magnetic nanoparticles to reversibly occlude blood flow in microvessels. This allowed induction of ischemia in a specific cortical region of conscious mice of any postnatal age, including perinatal and neonatal stages, with precise spatiotemporal control but without surgical intervention of the skull or artery. When combined with longitudinal live-imaging approaches, this technology facilitated the discovery of a feature of the ischemic cascade: selective loss of smooth muscle cells in juveniles but not adults shortly after onset of ischemia and during blood reperfusion.


Asunto(s)
Isquemia Encefálica/inducido químicamente , Isquemia Encefálica/fisiopatología , Nanopartículas de Magnetita/efectos adversos , Animales , Isquemia Encefálica/tratamiento farmacológico , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/fisiopatología , Circulación Cerebrovascular/efectos de los fármacos , Circulación Cerebrovascular/fisiología , Modelos Animales de Enfermedad , Células HEK293 , Hipocampo/efectos de los fármacos , Humanos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Ratones Endogámicos C57BL , Ratones Transgénicos , Microcirculación/efectos de los fármacos , Microvasos/efectos de los fármacos , Microvasos/fisiopatología
8.
J Neurochem ; 138(2): 317-27, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26998748

RESUMEN

Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. Aberrant activation of cyclin-dependent kinase 5 (Cdk5) has been implicated in neuronal injury and neurodegeneration. Cdk5 is a neuronal protein kinase activated via interaction with its cofactor p35 that regulates numerous neuronal functions, including synaptic remodeling and cognition. However, conversion of p35 to p25 via Ca(2+) -dependent activation of calpain results in an aberrantly active Cdk5/p25 complex that is associated with neuronal damage and cell death. Here, we show that mice subjected to controlled cortical impact (CCI), a well-established experimental TBI model, exhibit increased p25 levels and consistently elevated Cdk5-dependent phosphorylation of microtubule-associated protein tau and retinoblastoma (Rb) protein in hippocampal lysates. Moreover, CCI-induced neuroinflammation as indicated by increased astrocytic activation and number of reactive microglia. Brain-wide conditional Cdk5 knockout mice (Cdk5 cKO) subjected to CCI exhibited significantly reduced edema, ventricular dilation, and injury area. Finally, neurophysiological recordings revealed that CCI attenuated excitatory post-synaptic potential field responses in the hippocampal CA3-CA1 pathway 24 h after injury. This neurophysiological deficit was attenuated in Cdk5 cKO mice. Thus, TBI induces increased levels of p25 generation and aberrant Cdk5 activity, which contributes to pathophysiological processes underlying TBI progression. Hence, selectively preventing aberrant Cdk5 activity may be an effective acute strategy to improve recovery from TBI. Traumatic brain injury (TBI) increases astrogliosis and microglial activation. Moreover, TBI deregulates Ca(2+) -homeostasis triggering p25 production. The protein kinase Cdk5 is aberrantly activated by p25 leading to phosphorylation of substrates including tau and Rb protein. Loss of Cdk5 attenuates TBI lesion size, indicating that Cdk5 is a critical player in TBI pathogenesis and thus may be a suitable therapeutic target for TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Neuronas/metabolismo , Animales , Calpaína/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteínas tau/metabolismo
9.
Stroke ; 46(6): 1620-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25931462

RESUMEN

BACKGROUND AND PURPOSE: New insights into the brain's ability to reorganize after injury are beginning to suggest novel restorative therapy targets. Potential therapies include pharmacological agents designed to promote axonal growth. The purpose of this study was to test the efficacy of one such drug, GSK249320, a monoclonal antibody that blocks the axon outgrowth inhibition molecule, myelin-associated glycoprotein, to facilitate recovery of motor skills in a nonhuman primate model of ischemic cortical damage. METHODS: Using a between-groups repeated-measures design, squirrel monkeys were randomized to 1 of 2 groups: an experimental group received intravenous GSK249320 beginning 24 hours after an ischemic infarct in motor cortex with repeated dosages given at 1-week intervals for 6 weeks and a control group received only the vehicle at matched time periods. The primary end point was a motor performance index based on a distal forelimb reach-and-retrieval task. Neurophysiological mapping techniques were used to determine changes in spared motor representations. RESULTS: All monkeys recovered to baseline motor performance levels by postinfarct day 16. Functional recovery in the experimental group was significantly facilitated on the primary end point, albeit using slower movements. At 7 weeks post infarct, motor maps in the spared ventral premotor cortex in the experimental group decreased in area compared with the control group. CONCLUSIONS: GSK249320, initiated 24 hours after a focal cortical ischemic infarct, facilitated functional recovery. Together with the neurophysiological data, these results suggest that GSK249320 has a substantial biological effect on spared cortical tissue. However, its mechanisms of action may be widespread and not strictly limited to peri-infarct cortex and nearby premotor areas.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Infarto Encefálico , Corteza Motora/fisiopatología , Destreza Motora/efectos de los fármacos , Glicoproteína Asociada a Mielina/antagonistas & inhibidores , Recuperación de la Función/efectos de los fármacos , Animales , Axones/metabolismo , Axones/patología , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/fisiopatología , Corteza Motora/patología , Saimiri
10.
J Neuroinflammation ; 11: 22, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24485041

RESUMEN

BACKGROUND: Repetitive hypoxic preconditioning (RHP) creates an anti-inflammatory phenotype that protects from stroke-induced injury for months after a 2-week treatment. The mechanisms underlying long-term tolerance are unknown, though one exposure to hypoxia significantly increased peripheral B cell representation. For this study, we sought to determine if RHP specifically recruited B cells into the protected ischemic hemisphere, and whether RHP could phenotypically alter B cells prior to stroke onset. METHODS: Adult, male SW/ND4 mice received RHP (nine exposures over 2 weeks; 8 to 11 % O2; 2 to 4 hours) or identical exposures to 21 % O2 as control. Two weeks following RHP, a 60-minute transient middle cerebral artery occlusion was induced. Standard techniques quantified CXCL13 mRNA and protein expression. Two days after stroke, leukocytes were isolated from brain tissue (70:30 discontinuous Percoll gradient) and profiled on a BD-FACS Aria flow cytometer. In a separate cohort without stroke, sorted splenic CD19+ B cells were isolated 2 weeks after RHP and analyzed on an Illumina MouseWG-6 V2 Bead Chip. Final gene pathways were determined using Ingenuity Pathway Analysis. Student's t-test or one-way analysis of variance determined significance (P < 0.05). RESULTS: CXCL13, a B cell-specific chemokine, was upregulated in post-stroke cortical vessels of both groups. In the ischemic hemisphere, RHP increased B cell representation by attenuating the diapedesis of monocyte, macrophage, neutrophil and T cells, to quantities indistinguishable from the uninjured, contralateral hemisphere. Pre-stroke splenic B cells isolated from RHP-treated mice had >1,900 genes differentially expressed by microarray analysis. Genes related to B-T cell interactions, including antigen presentation, B cell differentiation and antibody production, were profoundly downregulated. Maturation and activation were arrested in a cohort of B cells from pre-stroke RHP-treated mice while regulatory B cells, a subset implicated in neurovascular protection from stroke, were upregulated. CONCLUSIONS: Collectively, our data characterize an endogenous neuroprotective phenotype that utilizes adaptive immune mechanisms pre-stroke to protect the brain from injury post-stroke. Future studies to validate the role of B cells in minimizing injury and promoting central nervous system recovery, and to determine whether B cells mediate an adaptive immunity to systemic hypoxia that protects from subsequent stroke, are needed.


Asunto(s)
Linfocitos B/metabolismo , Terapia de Inmunosupresión , Infarto de la Arteria Cerebral Media/complicaciones , Precondicionamiento Isquémico , Animales , Antígenos CD/metabolismo , Linfocitos B/patología , Proliferación Celular , Quimiocina CXCL1/metabolismo , Modelos Animales de Enfermedad , Endotelio/metabolismo , Endotelio/patología , Citometría de Flujo , Lateralidad Funcional , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Análisis por Micromatrices , Fosfopiruvato Hidratasa/metabolismo , Factores de Tiempo
11.
bioRxiv ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39416130

RESUMEN

Descending corticospinal tract (CST) connections to the neurons of the cervical spinal cord are vital for performance of forelimb-specific fine motor skills. In rodents, CST axons are almost entirely crossed at the level of the medullary decussation. While specific contralateral axon projections have been well-characterized using anatomic and molecular approaches, the field currently lacks a cohesive imaging modality allowing rapid quantitative assessment of the entire, bilateral cervical cord projectome at the level of individual laminae and cervical levels. This is potentially important as the CST is known to undergo marked structural remodeling in development, injury, and disease. We developed SpinalTRAQ (Spinal cord Tomographic Registration and Automated Quantification), a novel volumetric cervical spinal cord atlas and machine learning-driven microscopy acquisition and analysis pipeline that uses serial two-photon tomography- images to generate unbiased, region-specific quantification of the fluorescent pixels of anterograde AAV-labeled CST pre-synaptic terminals. In adult mice, the CST synaptic projectome densely innervates the contralateral hemicord, particularly in laminae 5 and 7, with sparse, monosynaptic input to motoneurons in lamina 9. Motor pools supplying axial musculature in the upper cervical cord are bilaterally innervated. The remainder of the ipsilateral cord has sparse labeling in a distinct distribution compared to the contralateral side. Following a focal stroke of the motor cortex, there is a complete loss of descending corticospinal axons from the injured side. Consistent with prior reports of axon collateralization, the CST spinal projectome increases at four weeks post-stroke and continues to elevate by six weeks post stroke. At six weeks post-stroke, we observed striking synapse formation in the denervated hemicord from the uninjured CST in a homotopic distribution. Additionally, CST synaptic reinnervation increases in the denervated lamina 9 in nearly all motoneuron pools, exhibiting novel patterns of connectivity. Detailed level- and lamina-specific quantification of the bilateral cervical spinal cord synaptic projectome reveals previously undescribed patterns of CST connectivity in health and injury-related plasticity.

12.
J Neurophysiol ; 109(5): 1268-82, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23236004

RESUMEN

Primary motor cortex (M1) movement representations reflect acquired motor skills. Representations of muscles and joints used in a skilled task expand. However, it is unknown whether motor restriction in healthy individuals results in complementary reductions in M1 representations. With the use of intracortical microstimulation techniques in squirrel monkeys, detailed maps of movement representations in M1 were derived before and up to 35 wk after restriction of the preferred distal forelimb (DFL) by use of a soft cast. Although total DFL area and movement threshold remained constant, casting resulted in a redistribution of digit and wrist/forearm representations. Digit representations progressively decreased, whereas wrist/forearm representations progressively increased in areal extent. In three of four monkeys, hand preference returned to normal by the end of the postcast recovery period, and postrecovery maps demonstrated reversal of restriction-induced changes. However, in one monkey, a chronic motor impairment occurred in the casted limb. Rehabilitation via a forced-use paradigm resulted in recovery in use and skill of the impaired limb, as well as restoration of normal motor maps. These results demonstrate that plasticity in motor representations can be induced by training or restricting movements of the limb. Physiological changes induced by restriction appear to be reversible, even in the case of adverse motor outcomes. The respective contributions of both disuse and lost motor skills are discussed. These results have relevance for clinical conditions requiring forelimb casting as well as interpreting the differential effects of injury and disuse that are necessarily intertwined after cortical injury, as occurs in stroke.


Asunto(s)
Mapeo Encefálico , Corteza Motora/fisiología , Destreza Motora/fisiología , Animales , Moldes Quirúrgicos , Miembro Anterior/inervación , Miembro Anterior/fisiología , Estudios Longitudinales , Masculino , Movimiento/fisiología , Plasticidad Neuronal , Restricción Física/fisiología , Saimiri
13.
Neurorehabil Neural Repair ; 36(8): 514-524, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35559809

RESUMEN

BACKGROUND: Physical use of the affected upper extremity can have a beneficial effect on motor recovery in people after stroke. Few studies have examined neurological mechanisms underlying the effects of forced use in non-human primates. In particular, the ventral premotor cortex (PMV) has been previously implicated in recovery after injury. OBJECTIVE: To examine changes in motor maps in PMV after a period of forced use following ischemic infarct in primary motor cortex (M1). METHODS: Intracortical microstimulation (ICMS) techniques were used to derive motor maps in PMV of four adult squirrel monkeys before and after an experimentally induced ischemic infarct in the M1 distal forelimb area (DFL) in the dominant hemisphere. Monkeys wore a sleeved jacket (generally 24 hrs/day) that forced limb use contralateral to the infarct in tasks requiring skilled digit use. No specific rehabilitative training was provided. RESULTS: At 3 mos post-infarct, ICMS maps revealed a significant expansion of the DFL representation in PMV relative to pre-infarct baseline (mean = +77.3%; n = 3). Regression analysis revealed that the magnitude of PMV changes was largely driven by M1 lesion size, with a modest effect of forced use. One additional monkey examined after ∼18 months of forced use demonstrated a 201.7% increase, unprecedented in non-human primate studies. CONCLUSIONS: Functional reorganization in PMV following an ischemic infarct in the M1 DFL is primarily driven by M1 lesion size. Additional expansion occurs in PMV with extremely long periods of forced use but such extended constraint is not considered clinically feasible.


Asunto(s)
Lesiones Encefálicas , Corteza Motora , Animales , Mapeo Encefálico , Miembro Anterior/fisiología , Humanos , Infarto
14.
Front Cell Neurosci ; 16: 969261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187291

RESUMEN

Injury to the adult mammalian central nervous system induces compensatory plasticity of spared axons-referred to as collateral axon sprouting-that can facilitate neural recovery. The contribution of reactive astrocytes to axon sprouting remains elusive. Here, we sought to investigate the role of axon degeneration-reactive astrocytes in the regulation of collateral axon sprouting that occurs in the mouse spinal cord after unilateral photothrombotic stroke of the primary motor cortex. We identified astrocytic leucine zipper-bearing kinase (LZK) as a positive regulator of astrocyte reactivity to corticospinal axon degeneration. Remarkably, genetic stimulation of astrocyte reactivity, via LZK overexpression in adult astrocytes, enhanced corticospinal axon sprouting. LZK promoted the production of astrocyte-derived ciliary neurotrophic factor (CNTF) that likely enhanced axon growth in mice with astrocytic LZK overexpression after injury. Our finding that LZK-dependent stimulation of astrocyte reactivity promotes corticospinal axon sprouting highlights the potential of engineering astrocytes to support injury-induced axon plasticity for neural repair.

15.
Stroke ; 41(3): 544-9, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20075346

RESUMEN

BACKGROUND AND PURPOSE: Although myelin-associated neurite outgrowth disinhibitors have shown promise in restoring motor function after stroke, their interactive effects with motor training have rarely been investigated. The present study examined whether a combinatorial treatment (NEP 1-40+motor rehabilitation) is more effective than either treatment alone in promoting motor recovery after focal ischemic injury. METHODS: Adult rats were assigned to one of 3 treatment groups (infarct/NEP 1-40+motor training, infarct/NEP 1-40 only, infarct/motor training only) and 2 control groups (infarct/no treatment, intact/no treatment). A focal ischemic infarct was induced by microinjecting endothelin-1 into the motor cortex. Therapeutic treatments were initiated 1 week postinfarct and included intraventricular infusion of the pharmacological agent NEP 1-40 and motor training (skilled reach task). Behavioral assessments on skilled reach, foot fault, and cylinder tests were conducted before the infarct and for 5 weeks postinfarct. RESULTS: Rats demonstrated significant forelimb impairment on skilled reach and foot fault tests after the infarct. Although all infarct groups improved over time, motor training alone and NEP 1-40 alone facilitated recovery on the skilled reach task at the end of treatment Weeks 2 and 4, respectively. However, only NEP 1-40 paired with motor training facilitated recovery after 1 week of treatment in addition to treatment at Weeks 2 and 4. Finally, only the NEP 1-40+motor training group maintained a performance level equivalent to that of the intact group over the entire period of posttreatment assessment. CONCLUSIONS: This study suggests that behavioral training interacts with the effects of the axonal growth promoter, NEP 1-40, and may accelerate behavioral recovery after focal cortical ischemia.


Asunto(s)
Infarto Cerebral/tratamiento farmacológico , Infarto Cerebral/rehabilitación , Terapia por Ejercicio/métodos , Corteza Motora , Proteínas de la Mielina/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Recuperación de la Función/fisiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Infarto Cerebral/fisiopatología , Terapia Combinada/métodos , Masculino , Corteza Motora/fisiología , Destreza Motora/fisiología , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Ratas , Ratas Long-Evans
16.
J Cereb Blood Flow Metab ; 40(2): 263-275, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30621519

RESUMEN

The discovery of meningeal lymphatic vessels (LVs) has sparked interest in identifying their role in diseases of the central nervous system. Similar to peripheral LVs, meningeal LVs depend on vascular endothelial growth factor receptor-3 (VEGFR3) signaling for development. Here we characterize the effect of stroke on meningeal LVs, and the impact of meningeal lymphatic hypoplasia on post-stroke outcomes. We show that photothrombosis (PT), but not transient middle cerebral artery occlusion (tMCAo), induces meningeal lymphangiogenesis in young male C57Bl/J6 mice. We also show that Vegfr3wt/mut mice develop significantly fewer meningeal LVs than Vegfr3wt/wt mice. Again, meningeal lymphangiogenesis occurs in the alymphatic zone lateral to the sagittal sinus only after PT-induced stroke in Vegfr3wt/wt mice. Interestingly, Vegfr3wt/mut mice develop larger stroke volumes than Vegfr3wt/wt mice after tMCAo, but not after PT. Our results reveal differences between PT and tMCAo models of stroke and underscore the need to consider method of stroke induction when investigating the role of meningeal lymphatics. Taken together, our data indicate that ischemic injury can induce the growth of meningeal LVs and that the absence of these LVs can impact post-stroke outcomes.


Asunto(s)
Sistema Glinfático , Linfangiogénesis/genética , Accidente Cerebrovascular , Receptor 3 de Factores de Crecimiento Endotelial Vascular , Animales , Modelos Animales de Enfermedad , Sistema Glinfático/metabolismo , Sistema Glinfático/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
17.
Front Neurosci ; 13: 1055, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636534

RESUMEN

Whole-brain volumetric microscopy techniques such as serial two-photon tomography (STPT) can provide detailed information on the roles of neuroinflammation and neuroplasticity throughout the whole brain post-stroke. STPT automatically generates high-resolution images of coronal sections of the entire mouse brain that can be readily visualized in three dimensions. We developed a pipeline for whole brain image analysis that includes supervised machine learning (pixel-wise random forest models via the "ilastik" software package) followed by registration to a standardized 3-D atlas of the adult mouse brain (Common Coordinate Framework v3.0; Allen Institute for Brain Science). These procedures allow the detection of cellular fluorescent signals throughout the brain in an unbiased manner. To illustrate our imaging techniques and automated image quantification, we examined long-term post-stroke motor circuit connectivity in mice that received a motor cortex photothrombotic stroke. Two weeks post-stroke, mice received intramuscular injections of pseudorabies virus (PRV-152), a trans-synaptic retrograde herpes virus driving expression of green fluorescent protein (GFP), into the affected contralesional forelimb to label neurons in descending tracts to the forelimb musculature. Mice were sacrificed 3 weeks post-stroke. We also quantified sub-acute neuroinflammation in the post-stroke brain in a separate cohort of mice following a 60 min transient middle cerebral artery occlusion (tMCAo). Naive e450+-labeled splenic CD8+ cytotoxic T cells were intravenously injected at 7, 24, 48, and 72 h post-tMCAo. Mice were sacrificed 4 days after stroke. Detailed quantification of post-stroke neural connectivity and neuroinflammation indicates a role for remote brain regions in stroke pathology and recovery. The workflow described herein, incorporating STPT and automated quantification of fluorescently labeled features of interest, provides a framework by which one can objectively evaluate labeled neuronal or lymphocyte populations in healthy and injured brains. The results provide region-specific quantification of neural connectivity and neuroinflammation, which could be a critical tool for investigating mechanisms of not only stroke recovery, but also a wide variety of brain injuries or diseases.

18.
J Cereb Blood Flow Metab ; 28(3): 612-20, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17895908

RESUMEN

Clinical and experimental data support a role for the intact cortex in recovery of function after stroke, particularly ipsilesional areas interconnected to the infarct. There is, however, little understanding of molecular events in the intact cortex, as most studies focus on the infarct and peri-infarct regions. This study investigated neuronal immunoreactivity for hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) in remote cortical areas 3 days after a focal ischemic infarct, as both HIF-1alpha and VEGFR-2 have been implicated in peri-infarct neuroprotection. For this study, intracortical microstimulation techniques defined primary motor (M1) and premotor areas in squirrel monkeys (genus Saimiri). An infarct was induced in the M1 hand representation, and immunohistochemical techniques identified neurons, HIF-1alpha and VEGFR-2. Stereologic techniques quantified the total neuronal populations and the neurons immunoreactive for HIF-1alpha or VEGFR-2. The results indicate that HIF-1alpha upregulation is confined to the infarct and peri-infarct regions. Increases in VEGFR-2 immunoreactivity occurred; however, in two remote regions: the ventral premotor hand representation and the M1 hindlimb representation. Neurons in these representations were previously shown to undergo significant increases in VEGF protein immunoreactivity, and comparison of the two data sets showed a significant correlation between levels of VEGF and VEGFR-2 immunoreactivity. Thus, while remote areas undergo a molecular response to the infarct, we hypothesize that there is a delay in the initiation of the response, which ultimately may increase the 'window of opportunity' for neuroprotective interventions in the intact cortex.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/análisis , Neuronas/química , Accidente Cerebrovascular/patología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/análisis , Animales , Química Encefálica , Corteza Cerebral/patología , Saimiri
19.
Endocrinology ; 159(11): 3848-3859, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256928

RESUMEN

Estrogens provide neuroprotection in animal models of stroke, but uterotrophic effects and cancer risk limit translation. Classic estrogen receptors (ERs) serve as transcription factors, whereas nonnuclear ERs govern numerous cell processes and exert beneficial cardiometabolic effects without uterine or breast cancer growth in mice. Here, we determined how nonnuclear ER stimulation with pathway-preferential estrogen (PaPE)-1 affects stroke outcome in mice. Ovariectomized female mice received vehicle, estradiol (E2), or PaPE-1 before and after transient middle cerebral artery occlusion (tMCAo). Lesion severity was assessed with MRI, and poststroke motor function was evaluated through 2 weeks after tMCAo. Circulating, spleen, and brain leukocyte subpopulations were quantified 3 days after tMCAo by flow cytometry, and neurogenesis and angiogenesis were evaluated histologically 2 weeks after tMCAo. Compared with vehicle, E2 and PaPE-1 reduced infarct volumes at 3 days after tMCAo, though only PaPE-1 reduced leukocyte infiltration into the ischemic brain. Unlike E2, PaPE-1 had no uterotrophic effect. Both interventions had negligible effect on long-term poststroke neuronal or vascular plasticity. All mice displayed a decline in motor performance at 2 days after tMCAo, and vehicle-treated mice did not improve thereafter. In contrast, E2 and PaPE-1 treatment afforded functional recovery at 6 days after tMCAo and beyond. Thus, the selective activation of nonnuclear ER by PaPE-1 decreased stroke severity and improved functional recovery in mice without undesirable uterotrophic effects. The beneficial effects of PaPE-1 are also associated with attenuated neuroinflammation in the brain. PaPE-1 and similar molecules may warrant consideration as efficacious ER modulators providing neuroprotection without detrimental effects on the uterus or cancer risk.


Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Infarto de la Arteria Cerebral Media/fisiopatología , Desempeño Psicomotor/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Recuperación de la Función , Animales , Conducta Animal/efectos de los fármacos , Femenino , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Ratones , Plasticidad Neuronal , Ovariectomía , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Útero/efectos de los fármacos
20.
J Cereb Blood Flow Metab ; 27(1): 76-85, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16639424

RESUMEN

Vascular endothelial growth factor (VEGF) is thought to contribute to both neuroprotection and angiogenesis after stroke. While increased expression of VEGF has been demonstrated in animal models after experimental ischemia, these studies have focused almost exclusively on the infarct and peri-infarct regions. The present study investigated the association of VEGF to neurons in remote cortical areas at three days after an infarct in primary motor cortex (M1). Although these remote areas are outside of the direct influence of the ischemic injury, remote plasticity has been implicated in recovery of function. For this study, intracortical microstimulation techniques identified primary and premotor cortical areas in a non-human primate. A focal ischemic infarct was induced in the M1 hand representation, and neurons and VEGF protein were identified using immunohistochemical procedures. Stereological techniques quantitatively assessed neuronal-VEGF association in the infarct and peri-infarct regions, M1 hindlimb, M1 orofacial, and ventral premotor hand representations, as well as non-motor control regions. The results indicate that VEGF protein significantly increased association to neurons in specific remote cortical areas outside of the infarct and peri-infarct regions. The increased association of VEGF to neurons was restricted to cortical areas that are functionally and/or behaviorally related to the area of infarct. There was no significant increase in M1 orofacial region or in non-motor control regions. We hypothesize that enhancement of neuronal VEGF in these functionally related remote cortical areas may be involved in recovery of function after stroke, through either neuroprotection or the induction of remote angiogenesis.


Asunto(s)
Infarto Encefálico/metabolismo , Neuronas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Infarto Encefálico/patología , Mapeo Encefálico , Recuento de Células , Estimulación Eléctrica , Procesamiento de Imagen Asistido por Computador , Microelectrodos , Neuronas/patología , Saimiri , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Regulación hacia Arriba/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA