Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 145(2): 284-99, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21496646

RESUMEN

The synaptic insertion or removal of AMPA receptors (AMPAR) plays critical roles in the regulation of synaptic activity reflected in the expression of long-term potentiation (LTP) and long-term depression (LTD). The cellular events underlying this important process in learning and memory are still being revealed. Here we describe and characterize the AAA+ ATPase Thorase, which regulates the expression of surface AMPAR. In an ATPase-dependent manner Thorase mediates the internalization of AMPAR by disassembling the AMPAR-GRIP1 complex. Following genetic deletion of Thorase, the internalization of AMPAR is substantially reduced, leading to increased amplitudes of miniature excitatory postsynaptic currents, enhancement of LTP, and elimination of LTD. These molecular events are expressed as deficits in learning and memory in Thorase null mice. This study identifies an AAA+ ATPase that plays a critical role in regulating the surface expression of AMPAR and thereby regulates synaptic plasticity and learning and memory.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Plasticidad Neuronal , Receptores AMPA/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Humanos , Aprendizaje , Masculino , Memoria , Ratones , Datos de Secuencia Molecular , Ratas , Alineación de Secuencia , Sinapsis
2.
Glia ; 70(7): 1289-1300, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35275429

RESUMEN

Mitochondria are abundant in the fine processes of astrocytes, however, potential roles for astrocyte mitochondria remain poorly understood. In the present study, we performed a systematic examination of the effects of abnormal oxidative phosphorylation in astrocytes on several mouse behaviors. Impaired astrocyte oxidative phosphorylation was produced by astrocyte-specific deletion of the nuclear mitochondrial gene, Cox10, that encodes an accessory protein of complex IV, the protoheme:heme-O-farnesyl transferase. As expected, conditional deletion of the Cox10 gene in mice (cKO mice) significantly reduced expression of COX10 and Cytochrome c oxidase subunit I (MTCO1) of Complex IV, resulting in decreased oxidative phosphorylation without significantly affecting glycolysis. No effects of the deletion were observed on locomotor activity, anxiety-like behavior, nociception, or spontaneous alternation. Cox10 cKO female mice exhibited mildly impaired novel object recognition, while Cox10 cKO male mice were moderately deficient in trace fear conditioning. No group-related changes were observed in conditional place preference (CPP) that assessed effects of morphine on reward. In contrast to CPP, Cox10 cKO mice demonstrated significantly increased aversive behaviors produced by naloxone-precipitated withdrawal following chronic exposure to morphine, that is, jumping and avoidance behavior as assessed by conditional place aversion (CPA). Our study suggests that astrocyte oxidative phosphorylation may contribute to behaviors associated with greater cognitive load and/or aversive and stressful conditions.


Asunto(s)
Transferasas Alquil y Aril , Dependencia de Morfina , Síndrome de Abstinencia a Sustancias , Transferasas Alquil y Aril/metabolismo , Animales , Astrocitos/metabolismo , Miedo , Femenino , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Mitocondrias/metabolismo , Morfina/metabolismo , Morfina/farmacología , Dependencia de Morfina/metabolismo , Dependencia de Morfina/psicología , Naloxona/metabolismo , Naloxona/farmacología , Antagonistas de Narcóticos/metabolismo , Antagonistas de Narcóticos/farmacología , Respiración , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/psicología
3.
Hum Mol Genet ; 29(17): 2936-2950, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32803234

RESUMEN

Our understanding of the contribution of genetic risk factors to neuropsychiatric diseases is limited to abnormal neurodevelopment and neuronal dysfunction. Much less is known about the mechanisms whereby risk variants could affect the physiology of glial cells. Our prior studies have shown that a mutant (dominant-negative) form of a rare but highly penetrant psychiatric risk factor, Disrupted-In-Schizophrenia-1 (DISC1), impairs metabolic functions of astrocytes and leads to cognitive dysfunction. In order to overcome the limitations of the mutant DISC1 model and understand the putative regional properties of astrocyte DISC1, we assessed whether knockdown of Disc1 (Disc1-KD) in mature mouse astrocytes of the prefrontal cortex (PFC) or the hippocampus would produce behavioral abnormalities that could be attributed to astrocyte bioenergetics. We found that Disc1-KD in the hippocampus but not PFC impaired trace fear conditioning in adult mice. Using the innovative deep learning approach and convolutional deep neural networks (cDNNs), ResNet50 or ResNet18, and single cell-based analysis, we found that Disc1-KD decreased the spatial density of astrocytes associated with abnormal levels and distribution of the mitochondrial markers and the glutamate transporter, GLAST. Disc1-KD in astrocytes also led to decreased expression of the glutamatergic and increased expression of the GABA-ergic synaptic markers, possibly via non-apoptotic activation of caspase 3 in neurons located within the individual territories of Disc1-KD astrocytes. Our results indicate that altered expression of DISC1 in astrocytes could impair astrocyte bioenergetics, leading to abnormalities in synaptic neurotransmission and cognitive function in a region-dependent fashion.


Asunto(s)
Encéfalo/metabolismo , Cognición/fisiología , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/patología , Mapeo Encefálico , Aprendizaje Profundo , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Red Nerviosa/patología , Neuroglía/metabolismo , Neuroglía/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología
4.
J Neurosci Res ; 100(2): 444-460, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34935171

RESUMEN

Emerging evidence indicates that probiotics can influence the gut-brain axis to ameliorate somatic and behavioral symptoms associated with brain disorders. However, whether probiotics have effects on the electrophysiological activities of individual neurons in the brain has not been evaluated at a single-neuron resolution, and whether the neuronal effects of probiotics depend on the gut microbiome status have yet to be tested. Thus, we conducted whole-cell patch-clamp recording-assisted electrophysiological characterizations of the neuronal effects of probiotics in male germ-free (GF) mice with and without gut microbiome colonization. Two weeks of treatment with probiotics (Lactobacillus rhamnosus and Bifidobacterium animalis) significantly and selectively increased the intrinsic excitability of hippocampal CA1 pyramidal neurons, whereas reconstituting gut microbiota in GF mice reversed the effects of the probiotics leading to a decreased intrinsic excitability in hippocampal neurons. This bidirectional modulation of neuronal excitability by probiotics was observed in hippocampal neurons with corresponding basal membrane property and action potential waveform changes. However, unlike the hippocampus, the amygdala excitatory neurons did not show any electrophysiological changes to the probiotic treatment in either GF or conventionalized GF mice. Our findings demonstrate for the first time how probiotic treatment can have a significant influence on the electrophysiological properties of neurons, bidirectionally modulating their intrinsic excitability in a gut microbiota and brain area-specific manner.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Microbioma Gastrointestinal/fisiología , Hipocampo , Masculino , Ratones , Neuronas , Probióticos/farmacología , Células Piramidales/fisiología
5.
Proc Natl Acad Sci U S A ; 116(5): 1686-1691, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30635412

RESUMEN

While neuroinflammation is an evolving concept and the cells involved and their functions are being defined, microglia are understood to be a key cellular mediator of brain injury and repair. The ability to measure microglial activity specifically and noninvasively would be a boon to the study of neuroinflammation, which is involved in a wide variety of neuropsychiatric disorders including traumatic brain injury, demyelinating disease, Alzheimer's disease (AD), and Parkinson's disease, among others. We have developed [11C]CPPC [5-cyano-N-(4-(4-[11C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide], a positron-emitting, high-affinity ligand that is specific for the macrophage colony-stimulating factor 1 receptor (CSF1R), the expression of which is essentially restricted to microglia within brain. [11C]CPPC demonstrates high and specific brain uptake in a murine and nonhuman primate lipopolysaccharide model of neuroinflammation. It also shows specific and elevated uptake in a murine model of AD, experimental allergic encephalomyelitis murine model of demyelination and in postmortem brain tissue of patients with AD. Radiation dosimetry in mice indicated [11C]CPPC to be safe for future human studies. [11C]CPPC can be synthesized in sufficient radiochemical yield, purity, and specific radioactivity and possesses binding specificity in relevant models that indicate potential for human PET imaging of CSF1R and the microglial component of neuroinflammation.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos/metabolismo , Microglía/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Placa Amiloide/metabolismo , Tomografía de Emisión de Positrones/métodos , Primates , Radiofármacos/metabolismo
6.
Glia ; 69(5): 1241-1250, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33400321

RESUMEN

Astrocytes are in control of metabolic homeostasis in the brain and support and modulate neuronal function in various ways. Astrocyte-derived l-lactate (lactate) is thought to play a dual role as a metabolic and a signaling molecule in inter-cellular communication. The biological significance of lactate release from astrocytes is poorly understood, largely because the tools to manipulate lactate levels in vivo are limited. We therefore developed new viral vectors for astrocyte-specific expression of a mammalianized version of lactate oxidase (LOx) from Aerococcus viridans. LOx expression in astrocytes in vitro reduced their intracellular lactate levels as well as the release of lactate to the extracellular space. Selective expression of LOx in astrocytes of the dorsal hippocampus in mice resulted in increased locomotor activity in response to novel stimuli. Our findings suggest that a localized decreased intracellular lactate pool in hippocampal astrocytes could contribute to greater responsiveness to environmental novelty. We expect that use of this molecular tool to chronically limit astrocytic lactate release will significantly facilitate future studies into the roles and mechanisms of intercellular lactate communication in the brain.


Asunto(s)
Astrocitos , Hipocampo , Ácido Láctico , Animales , Ratones , Neuronas , Oxidación-Reducción
7.
Int J Eat Disord ; 54(4): 639-645, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368559

RESUMEN

OBJECTIVE: Patients with Anorexia Nervosa (AN) display increased levels of oxidative stress that correlates with disease severity. Unfortunately, the biological ramifications of AN-induced oxidative stress on the brain are largely unknown. Our lab uses the preclinical activity-based anorexia (ABA) paradigm to model symptoms of AN. The goal of the present study was to determine how ABA experience affects oxidative state and its consequences in adolescent female rats. METHOD: We compared systemic glutathione and cysteine plasma concentrations and medial prefrontal cortex (mPFC) mitochondrial fission in ABA animals at maximum weight loss or following 10-days of weight recovery to levels in age-matched sedentary (SED) control rats. RESULTS: ABA animals at maximum weight loss had significantly lower plasma levels of cysteine and glutathione compared to SED controls. Additionally, ABA animals at max weight loss have significantly more mPFC mitochondrial fission. There were no significant differences in plasma analyte levels or mitochondrial fission between weight recovered ABA animals and SED controls. DISCUSSION: These data suggest that ABA experience results in oxidative stress that is remedied after weight restoration. The long-lasting ramifications of transient periods of increased oxidative stress are unknown and can lead to significant consequences on brain function and behavior.


Asunto(s)
Anorexia Nerviosa , Anorexia , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Dinámicas Mitocondriales , Estrés Oxidativo , Ratas , Pérdida de Peso
8.
J Neurosci ; 39(42): 8250-8258, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619494

RESUMEN

The recent shift in sociopolitical debates and growing liberalization of cannabis use across the globe has raised concern regarding its impact on vulnerable populations, such as pregnant women and adolescents. Epidemiological studies have long demonstrated a relationship between developmental cannabis exposure and later mental health symptoms. This relationship is especially strong in people with particular genetic polymorphisms, suggesting that cannabis use interacts with genotype to increase mental health risk. Seminal animal research directly linked prenatal and adolescent exposure to delta-9-tetrahydrocannabinol, the major psychoactive component of cannabis, with protracted effects on adult neural systems relevant to psychiatric and substance use disorders. In this article, we discuss some recent advances in understanding the long-term molecular, epigenetic, electrophysiological, and behavioral consequences of prenatal, perinatal, and adolescent exposure to cannabis/delta-9-tetrahydrocannabinol. Insights are provided from both animal and human studies, including in vivo neuroimaging strategies.


Asunto(s)
Cannabis/efectos adversos , Cognición/fisiología , Uso de la Marihuana/efectos adversos , Trastornos Mentales/etiología , Efectos Tardíos de la Exposición Prenatal/psicología , Adolescente , Animales , Femenino , Humanos , Trastornos Mentales/psicología , Embarazo
9.
FASEB J ; 33(12): 14734-14747, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31689372

RESUMEN

Cytokines and chemokines play diverse roles in different organ systems. Family with sequence similarity 19, member A1-5 (FAM19A1-A5; also known as TAFA1-5) is a group of conserved chemokine-like proteins enriched in the CNS of mice and humans. Their functions are only beginning to emerge. Here, we show that the expression of Fam19a1-a5 in different mouse brain regions are induced or suppressed by unfed and refed states. The striking nutritional regulation of Fam19a family members in the brain suggests a potential central role in regulating metabolism. Using a knockout (KO) mouse model, we show that loss of FAM19A1 results in sexually dimorphic phenotypes. In male mice, FAM19A1 deficiency alters food intake patterns during the light and dark cycle. Fam19a1 KO mice are hyperactive, and locomotor hyperactivity is more pronounced in female KO mice. Behavior tests indicate that Fam19a1 KO female mice have reduced anxiety and sensitivity to pain. Spatial learning and exploration, however, is preserved in Fam19a1 KO mice. Altered behaviors are associated with elevated norepinephrine and dopamine turnover in the striatum. Our results establish an in vivo function of FAM19A1 and highlight central roles for this family of neurokines in modulating animal physiology and behavior.-Lei, X., Liu, L., Terrillion, C. E., Karuppagounder, S. S., Cisternas, P., Lay, M., Martinelli, D. C., Aja, S., Dong, X., Pletnikov, M. V., Wong, G. W. FAM19A1, a brain-enriched and metabolically responsive neurokine, regulates food intake patterns and mouse behaviors.


Asunto(s)
Quimiocinas/fisiología , Cuerpo Estriado/metabolismo , Ingestión de Alimentos , Locomoción , Aprendizaje Espacial , Animales , Células Cultivadas , Quimiocinas/genética , Dopamina/metabolismo , Conducta Exploratoria , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Norepinefrina/metabolismo , Ratas , Factores Sexuales
10.
Infect Immun ; 86(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30037790

RESUMEN

Anti-NMDA receptor (NMDAR) autoantibodies have been postulated to play a role in the pathogenesis of NMDAR hypofunction, which contributes to the etiology of psychotic symptoms. Toxoplasma gondii is a pathogen implicated in psychiatric disorders and associated with elevation of NMDAR autoantibodies. However, it remains unclear whether parasite infection is the cause of NMDAR autoantibodies. By using mouse models, we found that NMDAR autoantibody generation had a strong temporal association with tissue cyst formation, as determined by MAG1 antibody seroreactivity (r = 0.96; P < 0.0001), which is a serologic marker for the cyst burden. The presence of MAG1 antibody response, but not T. gondii IgG response, was required for NMDAR autoantibody production. The pathogenic relevance of NMDAR autoantibodies to behavioral abnormalities (blunted response to amphetamine-triggered activity and decreased locomotor activity and exploration) and reduced expression of synaptic proteins (the GLUN2B subtype of NMDAR and PSD-95) has been demonstrated in infected mice. Our study suggests that NMDAR autoantibodies are specifically induced by persistent T. gondii infection and are most likely triggered by tissue cysts. NMDAR autoantibody seroreactivity may be a novel pathological hallmark of chronic toxoplasmosis, which raises questions about NMDAR hypofunction and neurodegeneration in the infected brain.


Asunto(s)
Autoanticuerpos/inmunología , Encéfalo/patología , Receptores de N-Metil-D-Aspartato/inmunología , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Toxoplasmosis/psicología , Animales , Conducta Animal , Encéfalo/inmunología , Encéfalo/parasitología , Encéfalo/fisiopatología , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Actividad Motora , Neuropatología , Toxoplasmosis/inmunología , Toxoplasmosis/patología
11.
Neurobiol Dis ; 103: 144-153, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28392471

RESUMEN

In addition to motor function, the cerebellum has been implicated in cognitive and social behaviors. Various structural and functional abnormalities of Purkinje cells (PCs) have been observed in schizophrenia and autism. As PCs express the gene Disrupted-In-Schizophrenia-1 (DISC1), and DISC1 variants have been associated with neurodevelopmental disorders, we evaluated the role of DISC1 in cerebellar physiology and associated behaviors using a mouse model of inducible and selective expression of a dominant-negative, C-terminus truncated human DISC1 (mutant DISC1) in PCs. Mutant DISC1 male mice demonstrated impaired social and novel placement recognition. No group differences were found in novelty-induced hyperactivity, elevated plus maze test, spontaneous alternation, spatial recognition in Y maze, sociability or accelerated rotarod. Expression of mutant DISC1 was associated with a decreased number of large somata PCs (volume: 3000-5000µm3) and an increased number of smaller somata PCs (volume: 750-1000µm3) without affecting the total number of PCs or the volume of the cerebellum. Compared to control mice, attached loose patch recordings of PCs in mutant DISC1 mice revealed increased spontaneous firing of PCs; and whole cell recordings showed increased amplitude and frequency of mEPSCs without significant changes in either Rinput or parallel fiber EPSC paired-pulse ratio. Our findings indicate that mutant DISC1 alters the physiology of PCs, possibly leading to abnormal recognition memory in mice.


Asunto(s)
Disfunción Cognitiva/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Locomoción/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Células de Purkinje/metabolismo , Conducta Social , Animales , Disfunción Cognitiva/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética
12.
Proc Natl Acad Sci U S A ; 111(45): 16106-11, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349393

RESUMEN

Chloroviruses (family Phycodnaviridae) are large DNA viruses known to infect certain eukaryotic green algae and have not been previously shown to infect humans or to be part of the human virome. We unexpectedly found sequences homologous to the chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) in a metagenomic analysis of DNA extracted from human oropharyngeal samples. These samples were obtained by throat swabs of adults without a psychiatric disorder or serious physical illness who were participating in a study that included measures of cognitive functioning. The presence of ATCV-1 DNA was confirmed by quantitative PCR with ATCV-1 DNA being documented in oropharyngeal samples obtained from 40 (43.5%) of 92 individuals. The presence of ATCV-1 DNA was not associated with demographic variables but was associated with a modest but statistically significant decrease in the performance on cognitive assessments of visual processing and visual motor speed. We further explored the effects of ATCV-1 in a mouse model. The inoculation of ATCV-1 into the intestinal tract of 9-11-wk-old mice resulted in a subsequent decrease in performance in several cognitive domains, including ones involving recognition memory and sensory-motor gating. ATCV-1 exposure in mice also resulted in the altered expression of genes within the hippocampus. These genes comprised pathways related to synaptic plasticity, learning, memory formation, and the immune response to viral exposure.


Asunto(s)
Conducta Animal , Chlorella/virología , Cognición , Laringe/virología , Memoria , Mariposas Nocturnas/virología , Phycodnaviridae , Animales , Femenino , Humanos , Masculino , Ratones
13.
J Neurosci ; 35(31): 11056-67, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26245967

RESUMEN

The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain. To elucidate functions of IP6K3, we generated mice with targeted deletion of IP6K3. We demonstrate that IP6K3 is highly concentrated in the brain in cerebellar Purkinje cells. IP6K3 physiologically binds to the cytoskeletal proteins adducin and spectrin, whose mutual interactions are perturbed in IP6K3-null mutants. Consequently, IP6K3 knock-out cerebella manifest abnormalities in Purkinje cell structure and synapse number, and the mutant mice display deficits in motor learning and coordination. Thus, IP6K3 is a major determinant of cytoskeletal disposition and function of cerebellar Purkinje cells. SIGNIFICANCE STATEMENT: We identified and cloned a family of three inositol hexakisphosphate kinases (IP6Ks) that generate the inositol pyrophosphates, most notably 5-diphosphoinositol pentakisphosphate (IP7). Of these, IP6K3 has been least characterized. In the present study we generated IP6K3 knock-out mice and show that IP6K3 is highly expressed in cerebellar Purkinje cells. IP6K3-deleted mice display defects of motor learning and coordination. IP6K3-null mice manifest aberrations of Purkinje cells with a diminished number of synapses. IP6K3 interacts with the cytoskeletal proteins spectrin and adducin whose altered disposition in IP6K3 knock-out mice may mediate phenotypic features of the mutant mice. These findings afford molecular/cytoskeletal mechanisms by which the inositol polyphosphate system impacts brain function.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Células de Purkinje/metabolismo , Espectrina/metabolismo , Sinapsis/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Forma de la Célula/fisiología , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Células de Purkinje/citología
14.
Neurobiol Dis ; 85: 174-186, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26545928

RESUMEN

Translocator protein (18 kDa), formerly known as the peripheral benzodiazepine receptor (PBR), has been extensively used as a biomarker of active brain disease and neuroinflammation. TSPO expression increases dramatically in glial cells, particularly in microglia and astrocytes, as a result of brain injury, and this phenomenon is a component of the hallmark response of the brain to injury. In this study, we used a mouse model of Sandhoff disease (SD) to assess the longitudinal expression of TSPO as a function of disease progression and its relationship to behavioral and neuropathological endpoints. Focusing on the presymptomatic period of the disease, we used ex vivo [(3)H]DPA-713 quantitative autoradiography and in vivo [(125)I]IodoDPA-713 small animal SPECT imaging to show that brain TSPO levels markedly increase prior to physical and behavioral manifestation of disease. We further show that TSPO upregulation coincides with early neuronal GM2 ganglioside aggregation and is associated with ongoing neurodegeneration and activation of both microglia and astrocytes. In brain regions with increased TSPO levels, there is a differential pattern of glial cell activation with astrocytes being activated earlier than microglia during the progression of disease. Immunofluorescent confocal imaging confirmed that TSPO colocalizes with both microglia and astrocyte markers, but the glial source of the TSPO response differs by brain region and age in SD mice. Notably, TSPO colocalization with the astrocyte marker GFAP was greater than with the microglia marker, Mac-1. Taken together, our findings have significant implications for understanding TSPO glial cell biology and for detecting neurodegeneration prior to clinical expression of disease.


Asunto(s)
Encéfalo/metabolismo , Receptores de GABA/metabolismo , Enfermedad de Sandhoff/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Gangliosidosis GM2/metabolismo , Estudios Longitudinales , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Actividad Motora/fisiología , Degeneración Nerviosa/diagnóstico por imagen , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Síntomas Prodrómicos , Enfermedad de Sandhoff/diagnóstico por imagen , Enfermedad de Sandhoff/patología , Tomografía Computarizada de Emisión de Fotón Único
15.
Neurobiol Dis ; 91: 307-14, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26969530

RESUMEN

BACKGROUND: Toxoplasma gondii is a pathogen implicated in psychiatric disorders. As elevated antibodies to T. gondii are also present in non-symptomatic individuals, we hypothesized that the age during first exposure to the pathogen may affect symptom manifestation. We tested this hypothesis by evaluating neurobehavioral abnormalities and the immune response in mice following adolescent or adult T. gondii infection. METHODS: Mice were infected with T. gondii at postnatal day 33 (adolescent/juvenile) or 61 (adult). At 8weeks post-infection (wpi), pre-pulse inhibition of the acoustic startle (PPI) in mice administered MK-801 (0.1 and 0.3mg/kg) and amphetamine (5 and 10mg/kg) was assessed. Peripheral (anti-T. gondii, C1q-associated IgG and anti-GLUN2 antibodies) and central (C1q and Iba1) markers of the immune response were also evaluated. In addition, regional brain expression of N-methyl-d-aspartate receptor (NMDAR) subunits (GLUN1 and GLUN2A), glutamatergic (vGLUT1, PSD95) and GABAergic (GAD67) markers, and monoamines (DA, NE, 5-HT) and their metabolites were measured. RESULTS: Juvenile and adult infected mice exhibited opposite effects of MK-801 on PPI, with decreased PPI in juveniles and increased PPI in adults. There was a significantly greater elevation of GLUN2 autoantibodies in juvenile-compared to adult-infected mice. In addition, age-dependent differences were found in regional expression of NMDAR subunits and markers of glutamatergic, GABAergic, and monoaminergic systems. Activated microglia and C1q elevations were found in both juvenile- and adult-T. gondii infected mice. CONCLUSIONS: Our study demonstrates that the age at first exposure to T. gondii is an important factor in shaping distinct behavioral and neurobiological abnormalities. Elevation in GLUN2 autoantibodies or complement protein C1q may be a potential underlying mechanism. A better understanding of these age-related differences may lead to more efficient treatments of behavioral disorders associated with T. gondii infection.


Asunto(s)
Autoanticuerpos/inmunología , Encéfalo/patología , Encéfalo/parasitología , Trastornos Mentales/patología , Receptores de N-Metil-D-Aspartato/inmunología , Toxoplasma , Envejecimiento , Animales , Inmunoglobulina G/metabolismo , Masculino , Ratones Endogámicos BALB C , Toxoplasmosis
16.
Dev Neurosci ; 38(2): 83-95, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26977597

RESUMEN

BACKGROUND: Neonatal white matter injury (NWMI) is the leading cause of cerebral palsy in prematurely born children. In order to develop a test bed for therapeutics, we recently reported a mouse model of NWMI by using a modified Rice-Vannucci model of neonatal ischemia on postnatal day 5 (P5) in CD-1 mice. We have previously shown that these mice illustrate initial neuroinflammation and oligodendroglial differentiation arrest followed by long-term dysmyelination, periventricular astrogliosis and axonal injury, resembling human NWMI. The objective of this study was to determine the sex-dependent long-term effects of neonatal brain injury on neurobehavioral and advanced in vivo neuroimaging indices in this mouse model, and to correlate these variables with histopathology. METHODS: After right common artery ligation on P5, in vivo T2-weighted imaging and diffusion tensor imaging (DTI) were performed on ligated and control animals at 4 and 8 weeks. Common sets of regions of interest were used to compare fractional anisotropy (FA) values between ischemic and control mice. Behavioral testing (open field, startle response and grip strength) was performed at adult age. Finally, the animals were sacrificed for immunohistochemical (IHC) assessment of major white matter tracts. RESULTS: DTI revealed significant sex-dependent changes in FA values ipsi- and contralateral to the ligation. Behavioral testing showed decreased reaction to acoustic stimuli in males but not females. Similarly, increased number of rearings and lack of novelty-induced habituation in the open field were encountered only in the male subgroup. Several regional correlations were found between FA values and these behavioral alterations. IHC studies revealed degeneration of mature oligodendrocytes and damage of white matter tracts in ligated animals, as previously reported in this model, and showed regional correlation with in vivo FA values and behavioral alterations. CONCLUSIONS: Our findings suggest structural sex-dependent long-term abnormalities after neonatal ischemia. These changes lead to behavioral deficits resembling common problems of patients with cerebral palsy.


Asunto(s)
Parálisis Cerebral/diagnóstico por imagen , Imagen de Difusión Tensora , Isquemia/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Animales , Animales Recién Nacidos , Axones , Conducta Animal/fisiología , Parálisis Cerebral/fisiopatología , Imagen de Difusión Tensora/métodos , Modelos Animales de Enfermedad , Ratones
17.
Brain Behav Immun ; 58: 52-56, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27109609

RESUMEN

Exposure to the neurotropic parasite, Toxoplasma gondii, causes significant brain and behavioral anomalies in humans and other mammals. Understanding the cellular mechanisms of T. gondii-generated brain pathologies would aid the advancement of novel strategies to reduce disease. Complement factor C1q is part of a classic immune pathway that functions peripherally to tag and remove infectious agents and cellular debris from circulation. In the developing and adult brain, C1q modifies neuronal architecture through synapse marking and pruning. T. gondii exposure and complement activation have both been implicated in the development of complex brain disorders such as schizophrenia. Thus, it seems logical that mechanistically, the physiological pathways associated with these two factors are connected. We employed a rodent model of chronic infection to investigate the extent to which cyst presence in the brain triggers activation of cerebral C1q. Compared to uninfected mice, cortical C1q was highly expressed at both the RNA and protein levels in infected animals bearing a high cyst burden. In these mice, C1q protein localized to cytoplasm, adjacent to GFAP-labeled astrocytes, near degenerating cysts, and in punctate patterns along processes. In summary, our results demonstrated an upregulation of cerebral C1q in response to latent T. gondii infection. Our data preliminarily suggest that this complement activity may aid in the clearance of this parasite from the CNS and in so doing, have consequences for the connectivity of neighboring cells and synapses.


Asunto(s)
Corteza Cerebral/inmunología , Corteza Cerebral/parasitología , Complemento C1q/metabolismo , Toxoplasmosis/inmunología , Animales , Enfermedad Crónica , Quistes/inmunología , Femenino , Ratones
18.
Neurobiol Dis ; 82: 176-184, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26093170

RESUMEN

Cannabis is an increasingly popular and controversial drug used worldwide. Cannabis use often begins during adolescence, a highly susceptible period for environmental stimuli to alter functional and structural organization of the developing brain. Given that adolescence is a critical time for the emergence of mental illnesses before full-onset in early adulthood, it is particularly important to investigate how genetic insults and adolescent cannabis exposure interact to affect brain development and function. Here we show for the first time that a perturbation in disrupted in schizophrenia 1 (DISC1) exacerbates the response to adolescent exposure to delta-9-tetrahydrocannabinol (Δ(9)-THC), a major psychoactive ingredient of cannabis, consistent with the concept that gene-environment interaction may contribute to the pathophysiology of psychiatric conditions. We found that chronic adolescent treatment with Δ(9)-THC exacerbates deficits in fear-associated memory in adult mice that express a putative dominant-negative mutant of DISC1 (DN-DISC1). Synaptic expression of cannabinoid receptor 1 (CB1R) is down-regulated in the prefrontal cortex, hippocampus, and amygdala, critical brain regions for fear-associated memory, by either expression of DN-DISC1 or adolescent Δ(9)-THC treatment. Notably, elevation of c-Fos expression evoked by context-dependent fear memory retrieval is impaired in these brain regions in DN-DISC1 mice. We also found a synergistic reduction of c-Fos expression induced by cue-dependent fear memory retrieval in DN-DISC1 with adolescent Δ(9)-THC exposure. These results suggest that alteration of CB1R-mediated signaling in DN-DISC1 mice may underlie susceptibility to detrimental effects of adolescent cannabis exposure on adult behaviors.


Asunto(s)
Encéfalo/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Emociones/efectos de los fármacos , Interacción Gen-Ambiente , Memoria/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Emociones/fisiología , Miedo/efectos de los fármacos , Miedo/fisiología , Memoria/fisiología , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptor Cannabinoide CB1/metabolismo
19.
Parasitology ; 142(4): 623-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25351997

RESUMEN

MicroRNA-132 (miR-132) has been demonstrated to affect multiple neuronal functions and its dysregulation is linked to several neurological disorders. We previously showed that acute Toxoplasma gondii infection induces miR-132 expression both in vitro and in vivo. To investigate the impact of chronic infection on miR-132, we infected mice with T. gondii PRU strain and performed assessment 5 months later in six brain regions (cortex, hypothalamus, striatum, cerebellum, olfactory bulb and hippocampus) by qPCR. We found that while acute infection of T. gondii increases the expression of miR-132, chronic infection has the opposite effect. The effect varied amongst different regions of the brain and presented in a sex-dependent manner, with females exhibiting more susceptibility than males. MiR-132 and brain-derived neurotrophic factor (BDNF, an inducer of miR-132) were not co-varies in the brain areas of infected mice. T. gondii DNA/RNA was found in all tested brain regions and a selective tropism towards the hippocampus, based on bradyzoite density, was observed in both males and females. However, the expressions of miR-132 or BDNF were poorly reflected by the density of T. gondii in brain areas. Our findings highlight the importance of investigating the miR-132-mediated neuronal function in mice infected with T. gondii.


Asunto(s)
Encéfalo/parasitología , MicroARNs/metabolismo , Toxoplasmosis Animal/metabolismo , Toxoplasmosis Cerebral/metabolismo , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación hacia Abajo , Femenino , Fibroblastos/parasitología , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Carga de Parásitos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Reversa , Factores Sexuales , Toxoplasma
20.
Proc Natl Acad Sci U S A ; 109(49): 20101-6, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23169655

RESUMEN

Half of all patients with multiple sclerosis (MS) experience cognitive impairment, for which there is no pharmacological treatment. Using magnetic resonance spectroscopy (MRS), we examined metabolic changes in the hippocampi of MS patients, compared the findings to performance on a neurocognitive test battery, and found that N-acetylaspartylglutamate (NAAG) concentration correlated with cognitive functioning. Specifically, MS patients with cognitive impairment had low hippocampal NAAG levels, whereas those with normal cognition demonstrated higher levels. We then evaluated glutamate carboxypeptidase II (GCPII) inhibitors, known to increase brain NAAG levels, on cognition in the experimental autoimmune encephalomyelitis (EAE) model of MS. Whereas GCPII inhibitor administration did not affect physical disabilities, it increased brain NAAG levels and dramatically improved learning and memory test performance compared with vehicle-treated EAE mice. These data suggest that NAAG is a unique biomarker for cognitive function in MS and that inhibition of GCPII might be a unique therapeutic strategy for recovery of cognitive function.


Asunto(s)
Disfunción Cognitiva/enzimología , Encefalomielitis Autoinmune Experimental/complicaciones , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Hipocampo/metabolismo , Esclerosis Múltiple/complicaciones , Adulto , Análisis de Varianza , Animales , Disfunción Cognitiva/etiología , Dipéptidos/metabolismo , Femenino , Citometría de Flujo , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Pruebas Neuropsicológicas , Compuestos Organofosforados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA