Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell Mol Neurobiol ; 43(7): 3639-3651, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37314617

RESUMEN

Blood brain barrier (BBB) breakdown is a key driver of traumatic brain injury (TBI), contributing to prolonged neurological deficits and increased risk of death in TBI patients. Strikingly, the role of endothelium in the progression of BBB breakdown has not been sufficiently investigated, even though it constitutes the bulk of BBB structure. In the current study, we investigate TBI-induced changes in the brain endothelium at the subcellular level, particularly focusing on mitochondrial dysfunction, using a combination of confocal imaging, gene expression analysis, and molecular profiling by Raman spectrometry. Herein, we developed and applied an in-vitro blast-TBI (bTBI) model that employs an acoustic shock tube to deliver injury to cultured human brain microvascular endothelial cells (HBMVEC). We found that this injury results in aberrant expression of mitochondrial genes, as well as cytokines/ inflammasomes, and regulators of apoptosis. Furthermore, injured cells exhibit a significant increase in reactive oxygen species (ROS) and in Ca2+ levels. These changes are accompanied by overall reduction of intracellular proteins levels as well as profound transformations in mitochondrial proteome and lipidome. Finally, blast injury leads to a reduction in HBMVEC cell viability, with up to 50% of cells exhibiting signs of apoptosis following 24 h after injury. These findings led us to hypothesize that mitochondrial dysfunction in HBMVEC is a key component of BBB breakdown and TBI progression.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Endotelio/metabolismo , Apoptosis , Mitocondrias/metabolismo
2.
Nanomedicine ; 41: 102513, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954380

RESUMEN

Current glioblastoma multiforme (GBM) treatment is insufficient, facing obstacles like poor tumor accumulation and dose limiting side effects of chemotherapeutic agents. Targeted nanomaterials offer breakthrough potential in GBM treatment; however, traditional antibody-based targeting poses challenges for live brain application. To overcome current obstacles, we introduce here the development of a small molecule targeting agent, CFMQ, coupled to biocompatible chitosan coated poly(lactic-co-glycolic) acid nanoparticles. These targeted nanoparticles enhance cellular uptake and show rapid blood-brain barrier (BBB) permeability in-vitro, demonstrating the ability to effectively deliver their load to tumor cells. Encapsulation of the chemotherapeutic agent, temozolomide (TMZ), decreases the IC50 ~34-fold compared to free-drug. Also, CFMQ synergistically suppresses tumor cell progression, reducing colony formation (98%), cell migration (84%), and cell invasion (77%). Co-encapsulation of Cy5 enables optical image guided therapy. This biocompatible theranostic nanoformulation shows early promise in significantly enhancing the efficacy of TMZ, while providing potential for image-guided therapy for GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Carbocianinas , Línea Celular Tumoral , Receptores ErbB , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico
3.
Anal Chem ; 93(23): 8281-8290, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34048235

RESUMEN

Research in fundamental cell biology and pathology could be revolutionized by developing the capacity for quantitative molecular analysis of subcellular structures. To that end, we introduce the Ramanomics platform, based on confocal Raman microspectrometry coupled to a biomolecular component analysis algorithm, which together enable us to molecularly profile single organelles in a live-cell environment. This emerging omics approach categorizes the entire molecular makeup of a sample into about a dozen of general classes and subclasses of biomolecules and quantifies their amounts in submicrometer volumes. A major contribution of our study is an attempt to bridge Raman spectrometry with big-data analysis in order to identify complex patterns of biomolecules in a single cellular organelle and leverage discovery of disease biomarkers. Our data reveal significant variations in organellar composition between different cell lines. We also demonstrate the merits of Ramanomics for identifying diseased cells by using prostate cancer as an example. We report large-scale molecular transformations in the mitochondria, Golgi apparatus, and endoplasmic reticulum that accompany the development of prostate cancer. Based on these findings, we propose that Ramanomics datasets in distinct organelles constitute signatures of cellular metabolism in healthy and diseased states.


Asunto(s)
Aparato de Golgi , Orgánulos , Biomarcadores/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Mitocondrias , Orgánulos/metabolismo , Espectrometría Raman
4.
Nanomedicine ; 29: 102279, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32750495

RESUMEN

Here, we introduce a nanophotonics concept for optically triggered activation of microglia. Specifically, we synthesized a yolk-shell structured mesoporous silica coated core-shell upconverting nanoparticles (UCNP@ysSiO2). The nanoparticles are loaded with microglia activators-bacterial lipopolysaccharide (LPS) together with indocyanine green (ICG), and then capped with ß-cyclodextrin (CD) via selective affinity of this compound to photoswitchable azobenzene (Azo). Upon exposure to NIR light, and subsequent trans- to cis photoisomerization of the Azo group induced by the upconversion light, dissociation of ß-CD produces the release of LPS. The released LPS activates microglia through a toll-like receptor 4 mediated pathway, while ICG excited by its absorption of the 800 nm upconversion light, produces local heating, thus synergistically activating microglia through heat shock proteins. We propose that the controlled activation of microglia with deep tissue penetrating NIR triggered drug release, may provide a new strategy for in situ treatment of many brain diseases.


Asunto(s)
Encéfalo/efectos de los fármacos , Microglía/efectos de los fármacos , Nanopartículas/química , Óptica y Fotónica , Compuestos Azo/química , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Línea Celular , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , Verde de Indocianina/química , Lipopolisacáridos/química , Lipopolisacáridos/farmacología , beta-Ciclodextrinas/química
5.
Genes Chromosomes Cancer ; 58(7): 407-426, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30664301

RESUMEN

Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.


Asunto(s)
Núcleo Celular , Cromatina , Cromosomas , Regulación de la Expresión Génica , Genoma , Animales , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Cromatina/genética , Cromatina/ultraestructura , Cromosomas/genética , Cromosomas/ultraestructura , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Humanos
7.
Anal Chem ; 91(17): 11380-11387, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31381322

RESUMEN

Detailed studies of lipids in biological systems, including their role in cellular structure, metabolism, and disease development, comprise an increasingly prominent discipline called lipidomics. However, the conventional lipidomics tools, such as mass spectrometry, cannot investigate lipidomes until they are extracted, and thus they cannot be used for probing the lipid distribution nor for studying in live cells. Furthermore, conventional techniques rely on the lipid extraction from relatively large samples, which averages the data across the cellular populations and masks essential cell-to-cell variations. Further advancement of the discipline of lipidomics critically depends on the capability of high-resolution lipid profiling in live cells and, potentially, in single organelles. Here we report a micro-Raman assay designed for single-organelle lipidomics. We demonstrate how Raman microscopy can be used to measure the local intracellular biochemical composition and lipidome hallmarks-lipid concentration and unsaturation level, cis/trans isomer ratio, sphingolipids and cholesterol levels in live cells-with a sub-micrometer resolution, which is sufficient for profiling of subcellular structures. These lipidome data were generated by a newly developed biomolecular component analysis software, which provides a shared platform for data analysis among different research groups. We outline a robust, reliable, and user-friendly protocol for quantitative analysis of lipid profiles in subcellular structures. This method expands the capabilities of Raman-based lipidomics toward the analysis of single organelles within either live or fixed cells, thus allowing an unprecedented measure of organellar lipid heterogeneity and opening new quantitative ways to study the phenotypic variability in normal and diseased cells.


Asunto(s)
Lipidómica/métodos , Microscopía Óptica no Lineal/métodos , Orgánulos/química , Análisis de la Célula Individual/métodos , Espectrometría Raman/métodos , Metabolismo de los Lípidos , Lípidos/análisis , Orgánulos/metabolismo , Programas Informáticos
8.
Anal Chem ; 89(20): 10985-10990, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28910082

RESUMEN

To advance an understanding of cellular regulation and function it is crucial to identify molecular contents in cellular organelles, which accommodate specific biochemical processes. Toward achievement of this goal, we applied micro-Raman-Biomolecular Component Analysis assay for molecular profiling of major organelles in live cells. We used this assay for comparative analysis of proteins 3D conformation and quantification of proteins, RNA, and lipids concentrations in nucleoli, endoplasmic reticulum, and mitochondria of WI 38 diploid lung fibroblasts and HeLa cancer cells. Obtained data show substantial differences in the concentrations and conformations of proteins in the studied organelles. Moreover, differences in the intraorganellar concentrations of RNA and lipids between these cell lines were found. We report the biological significance of obtained macromolecular profiles and advocate for micro-Raman BCA assay as a valuable proteomics tool.


Asunto(s)
Lípidos/análisis , Proteínas/análisis , ARN/análisis , Espectrometría Raman , Diploidia , Retículo Endoplásmico/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo
9.
J Am Chem Soc ; 138(50): 16192-16195, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27935695

RESUMEN

We introduce a hybrid organic-inorganic system consisting of epitaxial NaYF4:Yb3+/X3+@NaYbF4@NaYF4:Nd3+ (X = null, Er, Ho, Tm, or Pr) core/shell/shell (CSS) nanocrystal with organic dye, indocyanine green (ICG) on the nanocrystal surface. This system is able to produce a set of narrow band emissions with a large Stokes-shift (>200 nm) in the second biological window of optical transparency (NIR-II, 1000-1700 nm), by directional energy transfer from light-harvesting surface ICG, via lanthanide ions in the shells, to the emitter X3+ in the core. Surface ICG not only increases the NIR-II emission intensity of inorganic CSS nanocrystals by ∼4-fold but also provides a broadly excitable spectral range (700-860 nm) that facilitates their use in bioapplications. We show that the NIR-II emission from ICG-sensitized Er3+-doped CSS nanocrystals allows clear observation of a sharp image through 9 mm thick chicken breast tissue, and emission signal detection through 22 mm thick tissue yielding a better imaging profile than from typically used Yb/Tm-codoped upconverting nanocrystals imaged in the NIR-I region (700-950 nm). Our result on in vivo imaging suggests that these ICG-sensitized CSS nanocrystals are suitable for deep optical imaging in the NIR-II region.

10.
J Cell Physiol ; 230(2): 427-39, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25077974

RESUMEN

We present a 3-D mapping in WI38 human diploid fibroblast cells of chromosome territories (CT) 13,14,15,21, and 22, which contain the nucleolar organizing regions (NOR) and participate in the formation of nucleoli. The nuclear radial positioning of NOR-CT correlated with the size of chromosomes with smaller CT more interior. A high frequency of pairwise associations between NOR-CT ranging from 52% (CT13-21) to 82% (CT15-21) was detected as well as a triplet arrangement of CT15-21-22 (72%). The associations of homologous CT were significantly lower (24-36%). Moreover, singular contacts between CT13-14 or CT13-22 were found in the majority of cells, while CT13-15 or CT13-21 predominantly exhibited multiple interactions. In cells with multiple nucleoli, one of the nucleoli (termed "dominant") always associated with a higher number of CT. Moreover, certain CT pairs more frequently contributed to the same nucleolus than to others. This nonrandom pattern suggests that a large number of the NOR-chromosomes are poised in close proximity during the postmitotic nucleolar recovery and through their NORs may contribute to the formation of the same nucleolus. A global data mining program termed the chromatic median determined the most probable interchromosomal arrangement of the entire NOR-CT population. This interactive network model was significantly above randomized simulation and was composed of 13 connections among the NOR-CT. We conclude that the NOR-CT form a global interactive network in the cell nucleus that may be a fundamental feature for the regulation of nucleolar and other genomic functions.


Asunto(s)
Nucléolo Celular/genética , Cromosomas Humanos/genética , Fibroblastos/citología , Región Organizadora del Nucléolo/genética , Línea Celular , Núcleo Celular/genética , Humanos , Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ/métodos , Modelos Biológicos
11.
Anal Chem ; 86(21): 10909-16, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25268694

RESUMEN

Fixation of biological sample is an essential technique applied in order to "freeze" in time the intracellular molecular content. However, fixation induces changes of the cellular molecular structure, which mask physiological distribution of biomolecules and bias interpretation of results. Accurate, sensitive, and comprehensive characterization of changes in biomolecular composition, occurring during fixation, is crucial for proper analysis of experimental data. Here we apply biomolecular component analysis for Raman spectra measured in the same nucleoli of HeLa cells before and after fixation by either formaldehyde solution or by chilled ethanol. It is found that fixation in formaldehyde does not strongly affect the Raman spectra of nucleolar biomolecular components, but may significantly decrease the nucleolar RNA concentration. At the same time, ethanol fixation leads to a proportional increase (up to 40%) in concentrations of nucleolar proteins and RNA, most likely due to cell shrinkage occurring in the presence of coagulant fixative. Ethanol fixation also triggers changes in composition of nucleolar proteome, as indicated by an overall reduction of the α-helical structure of proteins and increase in the concentration of proteins containing the ß-sheet conformation. We conclude that cross-linking fixation is a more appropriate protocol for mapping of proteins in situ. At the same time, ethanol fixation is preferential for studies of RNA-containing macromolecules. We supplemented our quantitative Raman spectroscopic measurements with mapping of the protein and lipid macromolecular groups in live and fixed cells using coherent anti-Stokes Raman scattering nonlinear optical imaging.


Asunto(s)
Nucléolo Celular/metabolismo , ARN/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Espectrometría Raman
12.
J Cell Physiol ; 228(3): 609-16, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22886456

RESUMEN

Genomic DNA in mammalian cells is organized into ~1 Mbp chromatin domains (ChrD) which represent the basic structural units for DNA compaction, replication, and transcription. Remarkably, ChrD are highly dynamic and undergo both translational movement and configurational changes. In this study, we introduce an automated motion tracking analysis to measure, both in 2D and 3D, the linear displacement of early, mid and late S-phase replicated ChrD over short time periods (<1 sec). We conclude that previously identified large-scale transitions in the spatial position and configuration of chromatin, originate from asymmetric oscillations of the ChrD detectable in fractions of a second. The rapid oscillatory motion correlates with the replication timing of the ChrD with early S replicated ChrD showing the highest levels of motion and late S-phase chromatin the lowest. Virtually identical levels of oscillatory motion were detected when ChrD were measured during active DNA replication or during inhibition of transcription with DRB or α-amanitin. While this motion is energy independent, the oscillations of early S and mid S, but not late S replicated chromatin, are reduced by cell permeabilization. This suggests involvement of soluble factors in the regulation of chromatin dynamics. The DNA intercalating agent actinomycin D also significantly inhibits early S-labeled chromatin oscillation. We propose that rapid asymmetric oscillations of <1 sec are the basis for translational movements and configurational changes in ChrD previously detected over time spans of minutes-hours, and are the result of both the stochastic collisions of macromolecules and specific molecular interactions.


Asunto(s)
Cromatina/fisiología , Permeabilidad de la Membrana Celular , Cromatina/química , Cromatina/genética , ADN/química , ADN/genética , ADN/fisiología , Replicación del ADN , Colorantes Fluorescentes , Células HeLa , Humanos , Imagenología Tridimensional , Sustancias Macromoleculares , Microscopía Fluorescente , Modelos Biológicos , Movimiento/fisiología , Fase S , Procesos Estocásticos
13.
Anal Chem ; 85(7): 3545-52, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23458184

RESUMEN

Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells to the pluripotent state. Identification and quantitative characterization of changes in the molecular organization of the cell during the process of cellular reprogramming is valuable for stem cell research and advancement of its therapeutic applications. Here we employ quantitative Raman microspectroscopy and biomolecular component analysis (BCA) for a comparative analysis of the molecular composition of nucleoli in skin fibroblasts and iPSC derived from them. We report that the cultured fibroblasts obtained from different human subjects, share comparable concentrations of proteins, RNA, DNA, and lipids in the molecular composition of nucleoli. The nucleolar molecular environment is drastically changed in the corresponding iPSC. We measured that the transition from skin fibroblasts to iPSC is accompanied by a statistically significant increase in protein concentrations ~1.3-fold, RNA concentrations ~1.3-fold, and DNA concentrations ~1.4-fold, while no statistically significant difference was found for the lipid concentrations. The analysis of molecular vibrations associated with diverse aminoacids and protein conformations indicates that nucleoli of skin fibroblasts contain similar subsets of proteins, with prevalence of tyrosine. In iPSC, we observed a higher signal from tryptophan with an increase in the random coil and α helix protein conformations, indicating changes in the subset of nucleolar proteins during cell reprogramming. At the same time, the concentrations of major types of macromolecules and protein conformations in the nucleoli of iPSC and human embryonic stem cells (hESC) were found to be similar. We discuss these results in the context of nucleolar function and conclude that the nucleolar molecular content is correlated with the cellular differentiation status. The approach described here shows the potential for spectroscopically monitoring changes in macromolecular organization of the cell at different stages of reprogramming.


Asunto(s)
Nucléolo Celular/química , Fibroblastos/química , Células Madre Pluripotentes Inducidas/química , Piel/citología , Nucléolo Celular/genética , Células Cultivadas , Reprogramación Celular , ADN/análisis , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Lípidos/análisis , Proteínas Nucleares/análisis , ARN/análisis , Espectrometría Raman/métodos
14.
Proc Natl Acad Sci U S A ; 107(29): 12771-6, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20615987

RESUMEN

We introduce here multiplex nonlinear optical imaging as a powerful tool for studying the molecular organization and its transformation in cellular processes, with the specific example of apoptosis. Apoptosis is a process of self-initiated cell death, critically important for physiological regulation and elimination of genetic disorders. Nonlinear optical microscopy, combining the coherent anti-Stokes Raman scattering (CARS) microscopy and two-photon excited fluorescence (TPEF), has been used for analysis of spatial distribution of major types of biomolecules: proteins, lipids, and nucleic acids in the cells while monitoring their changes during apoptosis. CARS imaging revealed that in the nuclei of proliferating cells, the proteins are distributed nearly uniformly, with local accumulations in several nuclear structures. We have found that this distribution is abruptly disrupted at the onset of apoptosis and is transformed to a progressively irregular pattern. Fluorescence recovery after photobleaching (FRAP) studies indicate that pronounced aggregation of proteins in the nucleoplasm of apoptotic cells coincides with a gradual reduction in their mobility.


Asunto(s)
Apoptosis , Sustancias Macromoleculares/metabolismo , Sondas Moleculares/metabolismo , Fotones , Espectrometría Raman/métodos , Animales , Bovinos , ADN/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Lípidos/análisis , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , ARN/metabolismo , Albúmina Sérica Bovina/análisis , Albúmina Sérica Bovina/química
15.
ACS Chem Neurosci ; 13(3): 308-312, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35049274

RESUMEN

The SARS-CoV-2 virus is notorious for its neuroinvasive capability, causing multiple neurological conditions. The neuropathology of SARS-CoV-2 is increasingly attributed to mitochondrial dysfunction of brain microglia cells. However, the changes in biochemical content of mitochondria that drive the progression of neuro-COVID remain poorly understood. Here we introduce a Raman microspectrometry approach that enables the molecular profiling of single cellular organelles to characterize the mitochondrial molecular makeup in the infected microglia cells. We found that microglia treated with either spike protein or heat-inactivated SARS-CoV-2 trigger a dramatic reduction in mtDNA content and an increase in phospholipid saturation levels. At the same time, no significant changes were detected in Golgi apparatus and in lipid droplets, the organelles that accommodate biogenesis and storage of lipids. We hypothesize that transformations in mitochondria are caused by increased synthesis of reactive oxygen species in these organelles. Our findings call for the development of mitochondria-targeted therapeutic approaches to limit neuropathology associated with SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Encéfalo , Humanos , Microglía , Mitocondrias
16.
ACS Appl Bio Mater ; 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36153945

RESUMEN

Rare-earth doped multi-shell nanoparticles slated for theranostic applications produce a variety of emission bands upon near-infrared (NIR) excitation. Their downshifting emission is useful for high-contrast NIR imaging, while the upconversion light can induce photodynamic therapy (PDT). Unfortunately, integration of imaging and therapy is challenging. These modalities are better to be controlled independently so that, with the help of imaging, selective delivery of a theranostic agent at the site of interest could be ensured prior to on-demand PDT initiation. We introduce here multi-shell rare-earth doped nanoparticles (RENPs) arranged in a manner to produce only downshifting emission for NIR imaging when excited at one NIR wavelength and upconversion emission for therapeutic action by using a different excitation wavelength. In this work, multi-shell RENPs with a surface-bound sensitizer have been synthesized for decoupled 1550 nm downshifting emission upon 800 nm excitation and 550 nm upconversion emission caused by 980 nm irradiation. The independently controlled emission bands allow for high-contrast NIR imaging in NIR-IIb of optical transparency that gives high-contrast images due to significantly reduced light scattering. This can be conducted prior to PDT using 980 nm to produce upconverted light at 550 nm that excites the RENP surface-bound photosensitizer, Rose Bengal (RB), to effect photodynamic therapy with high specificity and safer theranostics.

17.
Light Sci Appl ; 10(1): 224, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728612

RESUMEN

Optical imaging is a most useful and widespread technique for the investigation of the structure and function of the cellular genomes. However, an analysis of immensely convoluted and irregularly compacted DNA polymer is highly challenging even by modern super-resolution microscopy approaches. Here we propose fluorescence lifetime imaging (FLIM) for the advancement of studies of genomic structure including DNA compaction, replication as well as monitoring of gene expression. The proposed FLIM assay employs two independent mechanisms for DNA compaction sensing. One mechanism relies on the inverse quadratic relation between the fluorescence lifetimes of fluorescence probes incorporated into DNA and their local refractive index, variable due to DNA compaction density. Another mechanism is based on the Förster resonance energy transfer (FRET) process between the donor and the acceptor fluorophores, both incorporated into DNA. Both these proposed mechanisms were validated in cultured cells. The obtained data unravel a significant difference in compaction of the gene-rich and gene-poor pools of genomic DNA. We show that the gene-rich DNA is loosely compacted compared to the dense DNA domains devoid of active genes.

18.
Nat Commun ; 12(1): 614, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504762

RESUMEN

Infiltrating gliomas are devastating and incurable tumors. Amongst all gliomas, those harboring a mutation in isocitrate dehydrogenase 1 mutation (IDH1mut) acquire a different tumor biology and clinical manifestation from those that are IDH1WT. Understanding the unique metabolic profile reprogrammed by IDH1 mutation has the potential to identify new molecular targets for glioma therapy. Herein, we uncover increased monounsaturated fatty acids (MUFA) and their phospholipids in endoplasmic reticulum (ER), generated by IDH1 mutation, that are responsible for Golgi and ER dilation. We demonstrate a direct link between the IDH1 mutation and this organelle morphology via D-2HG-induced stearyl-CoA desaturase (SCD) overexpression, the rate-limiting enzyme in MUFA biosynthesis. Inhibition of IDH1 mutation or SCD silencing restores ER and Golgi morphology, while D-2HG and oleic acid induces morphological defects in these organelles. Moreover, addition of oleic acid, which tilts the balance towards elevated levels of MUFA, produces IDH1mut-specific cellular apoptosis. Collectively, these results suggest that IDH1mut-induced SCD overexpression can rearrange the distribution of lipids in the organelles of glioma cells, providing new insight into the link between lipid metabolism and organelle morphology in these cells, with potential and unique therapeutic implications.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Mutación/genética , Orgánulos/metabolismo , Fosfolípidos/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Glioblastoma/patología , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Humanos , Modelos Biológicos , Oligodendroglioma/patología , Estearoil-CoA Desaturasa/metabolismo
19.
Biophys J ; 99(10): 3483-91, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21081098

RESUMEN

Fundamental understanding of cellular processes at molecular level is of considerable importance in cell biology as well as in biomedical disciplines for early diagnosis of infection and cancer diseases, and for developing new molecular medicine-based therapies. Modern biophotonics offers exclusive capabilities to obtain information on molecular composition, organization, and dynamics in a cell by utilizing a combination of optical spectroscopy and optical imaging. We introduce here a combination of Raman microspectrometry, together with coherent anti-Stokes Raman scattering (CARS) and two-photon excited fluorescence (TPEF) nonlinear optical microscopy, to study macromolecular organization of the nucleus throughout the cell cycle. Site-specific concentrations of proteins, DNA, RNA, and lipids were determined in nucleoli, nucleoplasmic transcription sites, nuclear speckles, constitutive heterochromatin domains, mitotic chromosomes, and extrachromosomal regions of mitotic cells by quantitative confocal Raman microspectrometry. A surprising finding, obtained in our study, is that the local concentration of proteins does not increase during DNA compaction. We also demonstrate that postmitotic DNA decondensation is a gradual process, continuing for several hours. The quantitative Raman spectroscopic analysis was corroborated with CARS/TPEF multimodal imaging to visualize the distribution of protein, DNA, RNA, and lipid macromolecules throughout the cell cycle.


Asunto(s)
Ciclo Celular , Núcleo Celular/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Dinámicas no Lineales , Espectrometría Raman/métodos , Compartimento Celular , ADN/metabolismo , Células HeLa , Humanos , Interfase , Microespectrofotometría , Mitosis
20.
Chromosoma ; 118(4): 459-70, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19296120

RESUMEN

Discrete chromatin domains (ChrD), containing an average of approximately 1 Mbp DNA, represent the basic structural units for the regulation of DNA organization and replication in situ. In this study, a bio-computational approach is employed to simultaneously measure the translational motion of large populations of ChrD in the cell nucleus of living cells. Both movement and configurational changes are strikingly higher in early S-phase replicating ChrD compared to those that replicate in mid and late S-phase. The chromatin dynamics was not sensitive to transcription inhibition by alpha-amanitin but was significantly reduced by actinomycin D treatment. Since a majority of active genes replicate in early S-phase, our results suggest a correlation between levels of chromatin dynamics and chromatin poised for active transcription. Analysis of ChrD colocalization with transcription sites and cDNA with ChrD and transcription sites further supports this proposal.


Asunto(s)
Cromatina/genética , Replicación del ADN/genética , Fase S , Alfa-Amanitina/farmacología , Carbocianinas/química , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Posicionamiento de Cromosoma/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Dactinomicina/farmacología , Nucleótidos de Desoxiuracil/química , Nucleótidos de Desoxiuracil/metabolismo , Expresión Génica , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Cinética , Microinyecciones , Microscopía Fluorescente , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA