Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Genet Genomics ; 297(4): 947-963, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35532795

RESUMEN

Malignancies dependent on hormone homeostasis include breast, ovary, cervical, prostate, testis and uterine tumors. Hormones are involved in signal transduction which orchestrate processes, such as apoptosis, proliferation, cell cycle or cytoskeleton organization. Currently, there is a need for novel biomarkers which would help to diagnose cancers efficiently. In this study, the genes implicated in signaling that is important in hormone-sensitive carcinogenesis were investigated regarding their prognostic significance. Data of seven cancer cohorts were collected from FireBrowse. 54 gene sets implicated in specific pathways were browsed through MSig database. Profiling was assessed via Monocle3, while gene ontology through PANTHER. For confirmation, correlation analysis was performed using WGCNA. Protein-protein networks were visualized via Cytoscape and impact of genes on survival, as well as cell cycle or cytoskeleton-related prognostic signatures, was tested. Several differences in expression profile were identified, some of them allowed to distinguish histology. Functional annotation revealed that various regulation of cell cycle, adhesion, migration, apoptosis and angiogenesis underlie these differences. Clinical traits, such as histological type or cancer staging, were found during evaluation of module-trait relationships. Of modules, the TopHubs (COL6A3, TNR, GTF2A1, NKX3-1) interacted directly with, e.g., PDGFB, ITGA10, SP1 or AKT3. Among TopHubs and interacting proteins, many showed an impact on hazard ratio and affected the cell cycle or cytoskeleton-related prognostic signatures, e.g., COL1A1 or PDGFB. In conclusion, this study laid the foundation for further hormone-sensitive carcinogenesis research through identification of genes which prove that crosstalk between cell cycle and cytoskeleton exists, opening avenues for future therapeutic strategies.


Asunto(s)
Neoplasias Hormono-Dependientes , Neoplasias , Biomarcadores , Carcinogénesis/genética , Ciclo Celular/genética , Biología Computacional , Citoesqueleto/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Hormonas , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias Hormono-Dependientes/genética , Proteínas Proto-Oncogénicas c-sis/genética , Transducción de Señal/genética
2.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35328751

RESUMEN

Recent reports indicate that the hypoxia-induced factor (HIF1α) and the Warburg effect play an initiating role in glucotoxicity, which underlies disorders in metabolic diseases. WWOX has been identified as a HIF1α regulator. WWOX downregulation leads to an increased expression of HIF1α target genes encoding glucose transporters and glycolysis' enzymes. It has been proven in the normoglycemic mice cells and in gestational diabetes patients. The aim of the study was to determine WWOX's role in glucose metabolism regulation in hyperglycemia and hypoxia to confirm its importance in the development of metabolic disorders. For this purpose, the WWOX gene was silenced in human normal fibroblasts, and then cells were cultured under different sugar and oxygen levels. Thereafter, it was investigated how WWOX silencing alters the genes and proteins expression profile of glucose transporters and glycolysis pathway enzymes, and their activity. In normoxia normoglycemia, higher glycolysis genes expression, their activity, and the lactate concentration were observed in WWOX KO fibroblasts in comparison to control cells. In normoxia hyperglycemia, it was observed a decrease of insulin-dependent glucose uptake and a further increase of lactate. It likely intensifies hyperglycemia condition, which deepen the glucose toxic effect. Then, in hypoxia hyperglycemia, WWOX KO caused weaker glucose uptake and elevated lactate production. In conclusion, the WWOX/HIF1A axis downregulation alters glucose metabolism and probably predispose to metabolic disorders.


Asunto(s)
Hiperglucemia , Enfermedades Metabólicas , Animales , Regulación hacia Abajo , Glucosa/metabolismo , Glucólisis , Humanos , Hiperglucemia/genética , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico , Ratones , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW/genética
3.
BMC Urol ; 21(1): 36, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33691672

RESUMEN

BACKGROUND: WW Domain Containing Oxidoreductase (WWOX) belongs to the unusual tumor suppressors, whose molecular function is not fully understood in bladder cancer, especially regarding interaction with Activator Protein 2 (AP-2) α/γ transcription factors. Thus, using lentiviral systems we created an in vitro model overexpressing or downregulating WWOX in CAL-29 cell line to assess invasiveness pathways. Surprisingly, while WWOX overexpression was accompanied with increased expression of both AP-2 factors, its downregulation only affected AP-2α level but not AP-2γ which remained high. METHODS: Using cellular models and unpaired t-test or Wilcoxon test, we investigated significant changes in biological processes: clonogenicity, extracellular matrix adhesion, metalloproteinases activity, 3D culture growth, proliferation, mitochondrial redox potential and invasiveness. Relative gene expression acquired through Real-Time qPCR has been analyzed by Welch's t-test. Additionally, using oncoprint analysis we distinguished groups for bioinformatics analyzes in order to perform a follow-up of in vitro experiments. RESULTS: Downregulation of WWOX in bladder cancer cell line intensified ability of single cell to grow into colony, mitochondrial redox potential and proliferation rate. Moreover, these cells shown elevated pro-MMP-2/9 activity but reduced adhesion to collagen I or laminin I, as well as distinct 3D culture growth. Through global in silico profiling we determined that WWOX alters disease-free survival of bladder cancer patients and modulates vital processes through AP-2 downstream effectors. CONCLUSIONS: Our research indicates that WWOX possesses tumor suppressor properties in bladder cancer but consecutive examination is required to entirely understand the contribution of AP-2γ or AP-2α.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Factor de Transcripción AP-2/fisiología , Proteínas Supresoras de Tumor/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Oxidorreductasa que Contiene Dominios WW/genética , Línea Celular Tumoral , Simulación por Computador , Humanos , Invasividad Neoplásica/genética
4.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33561977

RESUMEN

Zinc compounds have a number of beneficial properties for the skin, including antimicrobial, sebostatic and demulcent activities. The aim of the study was to develop new anti-acne preparations containing zinc-amino acid complexes as active ingredients. Firstly, the cytotoxicity of the zinc complexes was evaluated against human skin fibroblasts (1BR.3.N cell line) and human epidermal keratinocyte cell lines, and their antimicrobial activity was determined against Cutibacterium acnes. Then, zinc complexes of glycine and histidine were selected to create original gel formulations. The stability (by measuring pH, density and viscosity), microbiological purity (referring to PN-EN ISO standards) and efficacy of the preservative system (according to Ph. Eur. 10 methodology) for the preparations were evaluated. Skin tolerance was determined in a group of 25 healthy volunteers by the patch test. The preparations containing zinc(II) complexes with glycine and histidine as active substances can be topically used in the treatment of acne skin due to their high antibacterial activity against C. acnes and low cytotoxicity for the skin cells. Dermatological recipes have been appropriately composed; no irritation or allergy was observed, and the preparations showed high microbiological purity and physicochemical stability.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Antibacterianos/farmacología , Glicina/farmacología , Histidina/farmacología , Propionibacteriaceae/efectos de los fármacos , Compuestos de Zinc/farmacología , Acné Vulgar/microbiología , Línea Celular , Glicina/química , Histidina/química , Humanos , Queratinocitos/efectos de los fármacos , Propionibacteriaceae/crecimiento & desarrollo , Piel/efectos de los fármacos , Piel/microbiología , Piel/patología , Crema para la Piel , Zinc/química , Compuestos de Zinc/química
5.
J Cell Biochem ; 119(11): 9110-9121, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30105775

RESUMEN

In mammalian cells, angiotensin II (AngII) binds to 2 distinct high-affinity plasma membrane receptors: angiotensin receptor 1 (AT1R) and angiotensin receptor 2 (AT2R). Healthy human endometrium from women of reproductive age expresses all of the components of the renin-angiotensin system. Many studies suggest that AngII, acting via AT1R, may have a role in the development and progression of cancer, which changes the expression of angiogenic factors, AngII and AT1R are correlated with the presence of endometrial cancer (EC). The aim of the current study was to identify the effects of AngII on the proliferation, cell cycle progression, apoptosis and mobility of ISHIKAWA, MFE296 and MFE280 EC cells with silenced AT1R. It also examines epithelial-mesenchymal transition markers by gene expression analysis. The obtained results suggest that the silencing of AT1R expression alters the migration and invasion ability of EC cells. However, this silencing is not sufficient to inhibit the effects of AngII on EC cells, suggesting that AngII plays a more complex role in the development of EC.


Asunto(s)
Angiotensina II/metabolismo , Neoplasias Endometriales/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Apoptosis/genética , Apoptosis/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Neoplasias Endometriales/genética , Femenino , Silenciador del Gen/fisiología , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Angiotensina Tipo 1/genética , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
6.
Am J Obstet Gynecol ; 214(4): 538.e1-538.e7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26571191

RESUMEN

BACKGROUND: The mechanism of preeclampsia and its way of inheritance are still a mystery. Biochemical and immunochemical studies reveal a substantial increase in tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 concentrations in the blood of women with preeclampsia. The level of these factors is regulated by nuclear facxtor-kappa B, whose activation in a classical pathway requires inhibitory kappa B kinase gamma (known as NEMO or IKBKG). Moreover, NEMO can schedule between cytoplasma and the nucleus. In the nucleus, IKBKG interacts with other proteins, and thus, it is implicated in the regulation of different gene expressions, which are related to cell cycle progression, proliferation, differentiation, and apoptosis. OBJECTIVE: This is the first study investigating the association between the level of NEMO gene expression and the presence of preeclampsia. We tested the hypothesis that the simultaneous increase in NEMO gene expression both in the mother and her fetus may be responsible for the preeclampsia development. Moreover, the relationships between clinical risk factors of preeclampsia and the levels of NEMO gene expression in blood, umbilical cord blood, and placentas were investigated. STUDY DESIGN: A total of 91 women (43 preeclamptic women and 48 controls) and their children were examined. Real-time reverse transcription-polymerase chain reaction was used to assess the amount total NEMO messenger ribonucleic acid (mRNA) content and the mRNA level of each NEMO transcript from exons 1A, 1B, and 1C in maternal blood, umbilical cord blood, and placentas. Univariate analyses and correlation tests were performed to examine the association between NEMO gene expression and preeclampsia. RESULTS: Newborn weight and height, maternal platelet number, and gestational age (week of delivery) were lower in the group of women with preeclampsia than controls. NEMO gene expression level was found to be almost 7 times higher in the group of women with preeclampsia than healthy controls. The correlation analysis found that a simultaneous increase in the expression level of total NEMO mRNA in maternal blood and the mRNA for total NEMO (Rs = 0.311, P < .05), transcripts 1A (Rs = 0.463, P < .01), 1B (Rs = 0.454, P < .01), and 1C (Rs = 0.563, P < .001) in fetal blood was observed in preeclamptic pregnancies. In addition, the mRNA levels for total NEMO and transcripts 1A, 1B, and 1C were lower in placentas derived from pregnancies complicated by preeclampsia. CONCLUSION: Simultaneous increase of NEMO gene expression in maternal and fetal blood seems to be relevant for preeclampsia development. The results of our study also suggest that a decreased NEMO gene expression level in preeclamptic placentas may be the main reason for their intensified apoptosis.


Asunto(s)
Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Preeclampsia/sangre , Preeclampsia/genética , ARN Mensajero/metabolismo , Adulto , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Sangre Fetal/metabolismo , Expresión Génica , Humanos , Placenta/metabolismo , Reacción en Cadena de la Polimerasa , Embarazo , Transcripción Genética
7.
Postepy Hig Med Dosw (Online) ; 68: 616-32, 2014 May 20.
Artículo en Polaco | MEDLINE | ID: mdl-24864112

RESUMEN

Multidrug Resistance (MDR) is defined as insensitivity to administered medicines that are structurally unrelated and have different molecular targets. Cancers possess numerous mechanisms of drug resistance, involving various aspects of cell biology. A pivotal role in this phenomenon is played by proteins--enzymatic or structural parts of the cell. Membrane transporters, including the main members of ABC protein family--P-gp, MRP1 and BCRP, as well as LRP, which builds structure of vaults, determine the multidrug-resistant phenotype by decreasing drug concentration within the cell or modifying its distribution to intracellular compartments. The π isoform of protein enzyme--glutathione S-transferase (GSTP-1), is responsible for excessive intensity of detoxification of cytostatics. A common example of altered drug target site that does not respond to chemotherapy is topoisomerase II α (TopoIIa). Alterations of programmed cell death result from expression of metallothionein (MT)--inhibitor of the process, and cytokeratin 18 (CK18), which, if in high concentration, also prevents apoptosis of cells. Several methods of decreasing activity of these proteins have been developed, aiming to overcome MDR in cancer cells. However, for a variety of reasons, their clinical suitability is still very low, leading to continuous increase in death rate among patients. This paper presents current state of knowledge on the most important examples of proteins responsible for MDR of cancer cells and molecular mechanisms of their action.


Asunto(s)
Antígenos de Neoplasias/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Resistencia a Antineoplásicos/fisiología , Glutatión Transferasa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Humanos
8.
Cells ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786089

RESUMEN

Resistance to olaparib is the major obstacle in targeted therapy for ovarian cancer (OC) with poly(ADP-ribose) polymerase inhibitors (PARPis), prompting studies on novel combination therapies to enhance olaparib efficacy. Despite identifying various mechanisms, understanding how OC cells acquire PARPi resistance remains incomplete. This study investigated microRNA (miRNA) expression in olaparib-sensitive (PEO1, PEO4) and previously established olaparib-resistant OC cell lines (PEO1-OR) using high-throughput RT-qPCR and bioinformatic analyses. The role of miRNAs was explored regarding acquired resistance and resensitization with the ATR/CHK1 pathway inhibitors. Differentially expressed miRNAs were used to construct miRNA-mRNA regulatory networks and perform functional enrichment analyses for target genes with miRNet 2.0. TCGA-OV dataset was analyzed to explore the prognostic value of selected miRNAs and target genes in clinical samples. We identified potential processes associated with olaparib resistance, including cell proliferation, migration, cell cycle, and growth factor signaling. Resensitized PEO1-OR cells were enriched in growth factor signaling via PDGF, EGFR, FGFR1, VEGFR2, and TGFßR, regulation of the cell cycle via the G2/M checkpoint, and caspase-mediated apoptosis. Antibody microarray analysis confirmed dysregulated growth factor expression. The addition of the ATR/CHK1 pathway inhibitors to olaparib downregulated FGF4, FGF6, NT-4, PLGF, and TGFß1 exclusively in PEO1-OR cells. Survival and differential expression analyses for serous OC patients revealed prognostic miRNAs likely associated with olaparib resistance (miR-99b-5p, miR-424-3p, and miR-505-5p) and resensitization to olaparib (miR-324-5p and miR-424-3p). Essential miRNA-mRNA interactions were reconstructed based on prognostic miRNAs and target genes. In conclusion, our data highlight distinct miRNA profiles in olaparib-sensitive and olaparib-resistant cells, offering molecular insights into overcoming resistance with the ATR/CHK1 inhibitors in OC. Moreover, some miRNAs might serve as potential predictive signature molecules of resistance and therapeutic response.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA2 , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs , Neoplasias Ováricas , Ftalazinas , Piperazinas , ARN Mensajero , Humanos , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Piperazinas/farmacología , Piperazinas/uso terapéutico , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Redes Reguladoras de Genes/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
9.
World J Methodol ; 14(2): 92982, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38983668

RESUMEN

In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.

10.
Biomol Concepts ; 15(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38530804

RESUMEN

Among civilization diseases, the number of individuals suffering from type 2 diabetes (T2DM) is expected to increase to more than a billion in less than 20 years, which is associated with, e.g., populational aging, poor diet, sedentary lifestyle, genetic predispositions, and immunological factors. T2DM affects many organs and is characterized by insulin resistance, high glucose levels, and adipocyte dysfunction, which are related to senescence. Although this type of cellular aging has beneficial biological functions, it can also act unfavorable since senescent adipocytes resist apoptosis, enhance cytokine secretion, downregulate cell identity genes, and acquire the senescence-associated secretory phenotype that renders a more oxidative environment. Opposing T2DM is possible via a wide variety of senotherapies, including senolytics and senomorphics; nevertheless, further research is advised to expand therapeutic possibilities and benefits. Consequences that ought to be deeply researched include secretory phenotype, chronic inflammation, increasing insulin resistance, as well as impairment of adipogenesis and functioning of adipocyte cells. Herein, despite reviewing T2DM and fat tissue senescence, we summarized the latest adipocyte-related anti-diabetes solutions and suggested further research directions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/genética , Adipocitos , Senescencia Celular/genética , Envejecimiento
11.
Artículo en Inglés | MEDLINE | ID: mdl-38797909

RESUMEN

Hemophilia is a plasma bleeding disorder characterized by a deficiency of certain blood clotting factors. The most common forms of this disease, i.e., type A and type B, affect approximately 400,000 people worldwide. Without appropriate treatment ensuring the proper coagulation cascade, this disease may lead to serious disability. Minimizing patient discomfort is possible via replacement therapy, consisting of the substitution of a missing coagulation factor via intravenous administration. Frequent medication and the risk related to factor inhibitors are significant disadvantages, necessitating the improvement of current therapies or the development of novel ones. This review examines the humanized bispecific antibody Emicizumab which ensures hemostasis by mimicking the action of the coagulation factor VIII, a deficiency of which causes type A hemophilia. The paper outlines the topic and then summarizes available clinical trials on Emicizumab in type A hemophilia. Several interventional clinical trials have found Emicizumab to be effective in decreasing bleeding episodes and raising patient satisfaction among various hemophilia A populations. Current Emicizumab-related trials are forecast to be completed between 2024 and 2030, and in addition to congenital hemophilia A, the trials cover acquired hemophilia A and patients playing sports. Providing a more comprehensive understanding of Emicizumab may revolutionize the management of hemophilia type A and improve quality of life. Conclusively, Emicizumab is a gentler therapy owing to subcutaneous delivery and fewer injections, which reduces injection-site reactions and makes therapy less burdensome, ultimately decreasing hospital visits and indirect costs.

12.
Cytokine ; 61(2): 639-44, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23273598

RESUMEN

PURPOSE: Angiogenesis, a multistep process that results in new blood vessel formation from preexisting vasculature is essential for both the growth of solid tumour and for metastasis. Stimulation of vascular endothelial growth factor receptor (VEGFR), a transmembrane glycoprotein, results in mitogenesis. Within this family of receptors, VEGFR 2/kinase-insert-domain containing receptor appears to be principally upregulated during tumorigenesis. The aim of this study was to determine the expression of VEGFR-2/kinase-insert-domain containing receptor (KDR) and its correlation with angiotensin receptor type 1 (AT1-R) and clinical factors in endometrial carcinoma. METHODS: The expression of KDR and AT1-R was studied in endometrial carcinoma and normal endometrium by Real-time RT-PCR and Western blot analysis in 136 samples. The expression profile was correlated with the clinicopathological characteristics of endometrial adenocarcinoma. RESULTS: We noted a significant correlation between the expression of KDR and AT1-R in tumour grade G1, G2 and G3 (R(s)=0.50; p=0.002, R(s)=0.69; p=0.0001, R(s)=0.52; p=0.005, respectively). In stage I and stage II carcinoma, a significant correlation was also found between the expression of KDR and AT1-R (R(s)=0.70, p=0.0001, R(s)=0.67; p=0.001, respectively). Moreover significant correlation was observed between both KDR and AT1-R in tissue with different myometrial invasion (R(s)=0.54, p=0.0001, R(s)=0.68; p=0.0001; respectively for tumours with invasion into the inner half and invasion into the outer half). CONCLUSIONS: Basing on received correlation between AT1-R and KDR expression and previous results we speculate that angiotensin through AT1-R modulates KDR expression and thus have influence on local VEGF level. However, further studies are required to clarify the biological interaction between KDR, AT1-R and other hormonal regulators in endometrial carcinoma.


Asunto(s)
Neoplasias Endometriales/genética , Regulación Neoplásica de la Expresión Génica , Receptor de Angiotensina Tipo 1/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Endometriales/patología , Femenino , Humanos , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
13.
Clin Neuropathol ; 32(5): 384-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23557903

RESUMEN

The study describes a very rare case of primary extranodal marginal zone Bcell lymphoma of the central nervous system (MZL CNS) with an unusual clinical and radiological presentation mimicking subarachnoid bleeding and subdural hematoma (SDH) after head injury. The patient presented symptoms which had commenced 3 weeks earlier: a gradually-progressing headache associated with periodic right-sided cramp of the face muscles and numbness of the right upper limb. During urgent craniotomy for drainage of the presumed SDH, a tumor mass histopathologically and immunohistochemically matching marginal zone B-cell lymphoma was found. Molecular analysis confirmed monoclonal immunoglobulin heavy chain gene (IgH) rearrangement; the patient had previously suspected nodal lymphoma because of cervical lymphadenopathy, but histopathological, immunohistochemical and molecular examination excluded malignant lymphoma. The patient underwent successful radiotherapy, and achieved complete response. At present, no evidence of either systemic disease or lymph node enlargement has been found. The recognition of an indolent type of lymphoma in a rare anatomical localization is very important due to the proper management of the patient.


Asunto(s)
Neoplasias Encefálicas/patología , Hematoma Subdural/patología , Tejido Linfoide/patología , Linfoma de Células B de la Zona Marginal/patología , Lóbulo Parietal/patología , Hemorragia Subaracnoidea/patología , Lóbulo Temporal/patología , Neoplasias Encefálicas/cirugía , Craneotomía , Diagnóstico Diferencial , Femenino , Hematoma Subdural/cirugía , Humanos , Tejido Linfoide/cirugía , Linfoma de Células B de la Zona Marginal/cirugía , Persona de Mediana Edad , Membrana Mucosa/patología , Membrana Mucosa/cirugía , Lóbulo Parietal/cirugía , Hemorragia Subaracnoidea/cirugía , Lóbulo Temporal/cirugía , Resultado del Tratamiento
14.
Biology (Basel) ; 12(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36979157

RESUMEN

Following the discovery of WWOX, research has moved in many directions, including the role of this putative tumor suppressor in the central nervous system and related diseases. The task of determining the nature of WWOX in glioblastoma (GBM) is still considered to be at the initial stage; however, the influence of this gene on the GBM malignant phenotype has already been reported. Because most of the available in vitro research does not consider several cellular GBM models or a wide range of investigated biological assays, the present study aimed to determine the main processes by which WWOX exhibits anticancer properties in GBM, while taking into account the phenotypic heterogeneity between cell lines. Ectopic WWOX overexpression was studied in T98G, DBTRG-05MG, U251MG, and U87MG cell lines that were compared with the use of assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, three-dimensional and anchorage-independent growth, and invasiveness. Observations presenting the antineoplastic properties of WWOX were consistent for T98G, U251MG, and U87MG. Increased proliferation and tumor growth were noted in WWOX-overexpressing DBTRG-05MG cells. A possible explanation for this, arrived at via bioinformatics tools, was linked to the TARDBP transcription factor and expression differences of USP25 and CPNE2 that regulate EGFR surface abundance. Collectively, and despite various cell line-specific circumstances, WWOX exhibits its anticancer nature mainly via a reduction of cell viability and invasiveness of glioblastoma.

15.
Front Neurosci ; 17: 1260409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781246

RESUMEN

Introduction: Glioblastoma (GBM) is notorious for its clinical and molecular heterogeneity, contributing to therapeutic failure and a grim prognosis. WWOX is one of the tumor suppressor genes important in nervous tissue or related pathologies, which was scarcely investigated in GBM for reliable associations with prognosis or disease progression despite known alterations. Recently, we observed a phenotypic heterogeneity between GBM cell lines (U87MG, T98G, U251MG, DBTRG-05MG), among which the anti-GBM activity of WWOX was generally corresponding, but colony growth and formation were inconsistent in DBTRG-05MG. This prompted us to investigate the molecular landscapes of these cell lines, intending to translate them into the clinical context. Methods: U87MG/T98G/U251MG/DBTRG-05MG were subjected to high-throughput sequencing, and obtained data were explored via weighted gene co-expression network analysis, differential expression analysis, functional annotation, and network building. Following the identification of the most relevant DBTRG-distinguishing driver genes, data from GBM patients were employed for, e.g., differential expression analysis, survival analysis, and principal component analysis. Results: Although most driver genes were unique for each cell line, some were inversely regulated in DBTRG-05MG. Alongside driver genes, the differentially-expressed genes were used to build a WWOX-related network depicting protein-protein interactions in U87MG/T98G/U251MG/DBTRG-05MG. This network revealed processes distinctly regulated in DBTRG-05MG, e.g., microglia proliferation or neurofibrillary tangle assembly. POLE4 and HSF2BP were selected as DBTRG-discriminating driver genes based on the gene significance, module membership, and fold-change. Alongside WWOX, POLE4 and HSF2BP expression was used to stratify patients into cell lines-resembling groups that differed in, e.g., prognosis and treatment response. Some differences from a WWOX-related network were certified in patients, revealing genes that clarify clinical outcomes. Presumably, WWOX overexpression in DBTRG-05MG resulted in expression profile change resembling that of patients with inferior prognosis and drug response. Among these patients, WWOX may be inaccessible for its partners and does not manifest its anti-cancer activity, which was proposed in the literature but not regarding glioblastoma or concerning POLE4 and HSF2BP. Conclusion: Cell lines data enabled the identification of patients among which, despite high expression of WWOX tumor suppressor, no advantageous outcomes were noted due to the cancer-promoting profile ensured by other genes.

16.
World J Stem Cells ; 15(5): 302-322, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37342224

RESUMEN

Literature data on glioblastoma ongoingly underline the link between metabolism and cancer stemness, the latter is one responsible for potentiating the resistance to treatment, inter alia due to increased invasiveness. In recent years, glioblastoma stemness research has bashfully introduced a key aspect of cytoskeletal rearrangements, whereas the impact of the cytoskeleton on invasiveness is well known. Although non-stem glioblastoma cells are less invasive than glioblastoma stem cells (GSCs), these cells also acquire stemness with greater ease if characterized as invasive cells and not tumor core cells. This suggests that glioblastoma stemness should be further investigated for any phenomena related to the cytoskeleton and metabolism, as they may provide new invasion-related insights. Previously, we proved that interplay between metabolism and cytoskeleton existed in glioblastoma. Despite searching for cytoskeleton-related processes in which the investigated genes might have been involved, not only did we stumble across the relation to metabolism but also reported genes that were found to be implicated in stemness. Thus, dedicated research on these genes in GSCs seems justifiable and might reveal novel directions and/or biomarkers that could be utilized in the future. Herein, we review the previously identified cytoskeleton/metabolism-related genes through the prism of glioblastoma stemness.

17.
Front Genet ; 14: 1214968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37519886

RESUMEN

Introduction: The discovery of non-coding RNA (ncRNA) dates back to the pre-genomics era, but the progress in this field is still dynamic and leverages current post-genomics solutions. WWOX is a global gene expression modulator that is scarcely investigated for its role in regulating cancer-related ncRNAs. In bladder cancer (BLCA), the link between WWOX and ncRNA remains unexplored. The description of AP-2α and AP-2γ transcription factors, known as WWOX-interacting proteins, is more commonplace regarding ncRNA but still merits investigation. Therefore, this in vitro and in silico study aimed to construct an ncRNA-containing network with WWOX/AP-2 and to investigate the most relevant observation in the context of BLCA cell lines and patients. Methods: RT-112, HT-1376, and CAL-29 cell lines were subjected to two stable lentiviral transductions. High-throughput sequencing of cellular variants (deposited in the Gene Expression Omnibus database under the GSE193659 record) enabled the investigation of WWOX/AP-2-dependent differences using various bioinformatics tools (e.g., limma-voom, FactoMineR, multiple Support Vector Machine Recursive Feature Elimination (mSVM-RFE), miRDB, Arena-Idb, ncFANs, RNAhybrid, TargetScan, Protein Annotation Through Evolutionary Relationships (PANTHER), Gene Transcription Regulation Database (GTRD), or Evaluate Cutpoints) and repositories such as The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia. The most relevant observations from cap analysis gene expression sequencing (CAGE-seq) were confirmed using real-time PCR, whereas TCGA data were validated using the GSE31684 cohort. Results: The first stage of the whole study justified focusing solely on WWOX rather than on WWOX combined with AP-2α/γ. The most relevant observation of the developed ncRNA-containing network was LINC01137, i.e., long non-coding RNAs (lncRNAs) that unraveled the core network containing UPF1, ZC3H12A, LINC01137, WWOX, and miR-186-5p, the last three being a novel lncRNA/miRNA/mRNA axis. Patients' data confirmed the LINC01137/miR-186-5p/WWOX relationship and provided a set of dependent genes (i.e., KRT18, HES1, VCP, FTH1, IFITM3, RAB34, and CLU). Together with the core network, the gene set was subjected to survival analysis for both TCGA-BLCA and GSE31684 patients, which indicated that the increased expression of WWOX or LINC01137 is favorable, similar to their combination with each other (WWOX↑ and LINC01137↑) or with MIR186 (WWOX↑/LINC01137↑ but MIR186↓). Conclusion: WWOX is implicated in the positive feedback loop with LINC01137 that sponges WWOX-targeting miR-186-5p. This novel WWOX-containing lncRNA/miRNA/mRNA axis should be further investigated to depict its relationships in a broader context, which could contribute to BLCA research and treatment.

18.
J Mol Med (Berl) ; 101(8): 961-972, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460699

RESUMEN

The diminishing supply and increasing costs of donated blood have motivated research into novel hemoglobin-based oxygen carriers (HBOCs) that can serve as red blood cell (RBC) substitutes. HBOCs are versatile agents that can be used in the treatment of hemorrhagic shock. However, many of the RBC substitutes that are based on mammalian hemoglobins have presented key limitations such as instability and toxicity. In contrast, erythrocruorins (Ecs) are other types of HBOCs that may not suffer these disadvantages. Ecs are giant metalloproteins found in annelids, crustaceans, and some other invertebrates. Thus far, the Ecs of Lumbricus terrestris (LtEc) and Arenicola marina (AmEc) are the most thoroughly studied. Based on data from preclinical transfusion studies, it was found that these compounds not only efficiently transport oxygen and have anti-inflammatory properties, but also can be modified to further increase their effectiveness. This literature review focuses on the structure, properties, and application of Ecs, as well as their advantages over other HBOCs. Development of methods for both the stabilization and purification of erythrocruorin could confer to enhanced access to artificial blood resources.


Asunto(s)
Sustitutos Sanguíneos , Eritrocruorinas , Animales , Oxígeno/metabolismo , Hemoglobinas , Sustitutos Sanguíneos/química , Mamíferos/metabolismo
19.
Tumour Biol ; 33(3): 767-74, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22170435

RESUMEN

In Poland, endometrial carcinoma takes second place after breast cancer among all cancers in women and is considered the most common genital cancer. It has been repeatedly reported that angiotensin is involved in the development and invasion of some cancers including breast, ovarian, and pancreatic ones. It is suggested that angiotensin two and its receptors are actively involved in tumour biology in endometrial adenocarcinoma. In the present study, we identify a possible relationship between the expression of AT1-R, AT2-R, ERα, and VEGF and clinicopathological characteristics of primary endometrial adenocarcinoma. We determined the above components both at the mRNA (real-time RT-PCR) and protein levels (Western Blot assay). Our results indicate that in patients with grade G3 adenocarcinoma, the expression of AT1-R significantly decreased in comparison with G1 patients (p = 0.034), but the level of ERα was the highest in G2 and the lowest in G3. Moreover, the level of VEGF mRNA significantly increased between G2 and G3 (p = 0.034). We also noted a significant correlation between the expression of AT1-R and AT2-R in FIGO stage 1 (R (s) = 0.9636; p = 0.0001) and that of AT2-R and VEGF (R (s) = 0.5377; p = 0.005). In grade G1 and G2 carcinoma, a significant correlation was also found between the expression of AT1-R and AT2-R (R (s) = 0.9924; p = 0.0001; R (s) = 0.8717, p = 0.0005, respectively), but in grade G1, a negative correlation was observed between AT1-R and VEGF (R (s) = -0.8945, p = 0.0005). Further studies are required to clarify the biological function of the angiotensin receptor in regulating VEGF expression in endometrial carcinoma.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/patología , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Receptor de Angiotensina Tipo 1/genética , Factor A de Crecimiento Endotelial Vascular/genética , Adenocarcinoma/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Endometriales/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Expresión Génica , Humanos , Persona de Mediana Edad , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Cells ; 11(9)2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35563688

RESUMEN

Following the invention of high-throughput sequencing, cancer research focused on investigating disease-related alterations, often inadvertently omitting tumor heterogeneity. This research was intended to limit the impact of heterogeneity on conclusions related to WWOX/AP-2α/AP-2γ in bladder cancer which differently influenced carcinogenesis. The study examined the signaling pathways regulated by WWOX-dependent AP-2 targets in cell lines as biological replicates using high-throughput sequencing. RT-112, HT-1376 and CAL-29 cell lines were subjected to two stable lentiviral transductions. Following CAGE-seq and differential expression analysis, the most important genes were identified and functionally annotated. Western blot was performed to validate the selected observations. The role of genes in biological processes was assessed and networks were visualized. Ultimately, principal component analysis was performed. The studied genes were found to be implicated in MAPK, Wnt, Ras, PI3K-Akt or Rap1 signaling. Data from pathways were collected, explaining the differences/similarities between phenotypes. FGFR3, STAT6, EFNA1, GSK3B, PIK3CB and SOS1 were successfully validated at the protein level. Afterwards, a definitive network was built using 173 genes. Principal component analysis revealed that the various expression of these genes explains the phenotypes. In conclusion, the current study certified that the signaling pathways regulated by WWOX and AP-2α have more in common than that regulated by AP-2γ. This is because WWOX acts as an EMT inhibitor, AP-2γ as an EMT enhancer while AP-2α as a MET inducer. Therefore, the relevance of AP-2γ in targeted therapy is now more evident. Some of the differently regulated genes can find application in bladder cancer treatment.


Asunto(s)
Factores de Transcripción , Neoplasias de la Vejiga Urinaria , Carcinogénesis/genética , Humanos , Fosfatidilinositol 3-Quinasas , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Proteínas Supresoras de Tumor/genética , Neoplasias de la Vejiga Urinaria/genética , Oxidorreductasa que Contiene Dominios WW/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA