Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 149(6): 1314-26, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22682251

RESUMEN

Hypothalamic neurons expressing Agouti-related peptide (AgRP) are critical for initiating food intake, but druggable biochemical pathways that control this response remain elusive. Thus, genetic ablation of insulin or leptin signaling in AgRP neurons is predicted to reduce satiety but fails to do so. FoxO1 is a shared mediator of both pathways, and its inhibition is required to induce satiety. Accordingly, FoxO1 ablation in AgRP neurons of mice results in reduced food intake, leanness, improved glucose homeostasis, and increased sensitivity to insulin and leptin. Expression profiling of flow-sorted FoxO1-deficient AgRP neurons identifies G-protein-coupled receptor Gpr17 as a FoxO1 target whose expression is regulated by nutritional status. Intracerebroventricular injection of Gpr17 agonists induces food intake, whereas Gpr17 antagonist cangrelor curtails it. These effects are absent in Agrp-Foxo1 knockouts, suggesting that pharmacological modulation of this pathway has therapeutic potential to treat obesity.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Ingestión de Alimentos , Factores de Transcripción Forkhead/metabolismo , Hipotálamo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Metabolismo Energético , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Glucosa/metabolismo , Leptina/metabolismo , Ratones
2.
Nat Methods ; 9(1): 57-63, 2011 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22205519

RESUMEN

We present a consolidated view of the complexity and challenges of designing studies for measurement of energy metabolism in mouse models, including a practical guide to the assessment of energy expenditure, energy intake and body composition and statistical analysis thereof. We hope this guide will facilitate comparisons across studies and minimize spurious interpretations of data. We recommend that division of energy expenditure data by either body weight or lean body weight and that presentation of group effects as histograms should be replaced by plotting individual data and analyzing both group and body-composition effects using analysis of covariance (ANCOVA).


Asunto(s)
Ingestión de Energía , Metabolismo Energético , Ratones/fisiología , Animales , Composición Corporal , Ambiente , Vivienda para Animales , Ratones Mutantes/genética , Obesidad/etiología , Fenotipo
3.
PLoS Genet ; 6(5): e1000938, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20463885

RESUMEN

A major component of obesity-related insulin resistance is the establishment of a chronic inflammatory state with invasion of white adipose tissue by mononuclear cells. This results in the release of pro-inflammatory cytokines, which in turn leads to insulin resistance in target tissues such as skeletal muscle and liver. To determine the role of insulin action in macrophages and monocytes in obesity-associated insulin resistance, we conditionally inactivated the insulin receptor (IR) gene in myeloid lineage cells in mice (IR(Deltamyel)-mice). While these animals exhibit unaltered glucose metabolism on a normal diet, they are protected from the development of obesity-associated insulin resistance upon high fat feeding. Euglycemic, hyperinsulinemic clamp studies demonstrate that this results from decreased basal hepatic glucose production and from increased insulin-stimulated glucose disposal in skeletal muscle. Furthermore, IR(Deltamyel)-mice exhibit decreased concentrations of circulating tumor necrosis factor (TNF) alpha and thus reduced c-Jun N-terminal kinase (JNK) activity in skeletal muscle upon high fat feeding, reflecting a dramatic reduction of the chronic and systemic low-grade inflammatory state associated with obesity. This is paralleled by a reduced accumulation of macrophages in white adipose tissue due to a pronounced impairment of matrix metalloproteinase (MMP) 9 expression and activity in these cells. These data indicate that insulin action in myeloid cells plays an unexpected, critical role in the regulation of macrophage invasion into white adipose tissue and in the development of obesity-associated insulin resistance.


Asunto(s)
Resistencia a la Insulina , Macrófagos/inmunología , Monocitos/inmunología , Obesidad/inmunología , Receptor de Insulina/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Hígado/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/inmunología , Obesidad/genética , Obesidad/metabolismo , Receptor de Insulina/genética
4.
Cell Metab ; 6(6): 431-45, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18054313

RESUMEN

The contribution of different leptin-induced signaling pathways in control of energy homeostasis is only partly understood. Here we show that selective Pten ablation in leptin-sensitive neurons (Pten(DeltaObRb)) results in enhanced Pi3k activation in these cells and reduces adiposity by increasing energy expenditure. White adipose tissue (WAT) of Pten(DeltaObRb) mice shows characteristics of brown adipose tissue (BAT), reflected by increased mitochondrial content and Ucp1 expression resulting from enhanced leptin-stimulated sympathetic nerve activity (SNA) in WAT. In contrast, leptin-deficient ob/ob-Pten(DeltaObRb) mice exhibit unaltered body weight and WAT morphology compared to ob/ob mice, pointing to a pivotal role of endogenous leptin in control of WAT transdifferentiation. Leanness of Pten(DeltaObRb) mice is accompanied by enhanced sensitivity to insulin in skeletal muscle. These data provide direct genetic evidence that leptin-stimulated Pi3k signaling in the CNS regulates energy expenditure via activation of SNA to perigonadal WAT leading to BAT-like differentiation of WAT.


Asunto(s)
Tejido Adiposo Blanco/crecimiento & desarrollo , Tejido Adiposo Blanco/metabolismo , Sistema Nervioso Central/metabolismo , Leptina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Tejido Adiposo Pardo/crecimiento & desarrollo , Tejido Adiposo Pardo/metabolismo , Animales , Transdiferenciación Celular , Activación Enzimática , Glucosa/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Obesos , Ratones Transgénicos , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Transducción de Señal , Delgadez
5.
J Clin Invest ; 116(7): 1761-6, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16823473

RESUMEN

Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.


Asunto(s)
Metabolismo Energético , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Animales , Humanos , Hipotálamo/citología , Hipotálamo/metabolismo , Leptina/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología
6.
J Clin Invest ; 116(7): 1886-901, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16794735

RESUMEN

Leptin and insulin have been identified as fuel sensors acting in part through their hypothalamic receptors to inhibit food intake and stimulate energy expenditure. As their intracellular signaling converges at the PI3K pathway, we directly addressed the role of phosphatidylinositol3,4,5-trisphosphate-mediated (PIP3-mediated) signals in hypothalamic proopiomelanocortin (POMC) neurons by inactivating the gene for the PIP3 phosphatase Pten specifically in this cell type. Here we show that POMC-specific disruption of Pten resulted in hyperphagia and sexually dimorphic diet-sensitive obesity. Although leptin potently stimulated Stat3 phosphorylation in POMC neurons of POMC cell-restricted Pten knockout (PPKO) mice, it failed to significantly inhibit food intake in vivo. POMC neurons of PPKO mice showed a marked hyperpolarization and a reduction in basal firing rate due to increased ATP-sensitive potassium (KATP) channel activity. Leptin was not able to elicit electrical activity in PPKO POMC neurons, but application of the PI3K inhibitor LY294002 and the KATP blocker tolbutamide restored electrical activity and leptin-evoked firing of POMC neurons in these mice. Moreover, icv administration of tolbutamide abolished hyperphagia in PPKO mice. These data indicate that PIP3-mediated signals are critical regulators of the melanocortin system via modulation of KATP channels.


Asunto(s)
Neuronas/metabolismo , Obesidad , Fosfohidrolasa PTEN/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canales de Potasio/metabolismo , Proopiomelanocortina/metabolismo , Sistemas de Mensajero Secundario/fisiología , Animales , Cromonas/metabolismo , Dieta , Ingestión de Alimentos/efectos de los fármacos , Femenino , Hipoglucemiantes/farmacología , Hipotálamo/citología , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Noqueados , Morfolinas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Tolbutamida/farmacología
7.
Nat Neurosci ; 8(10): 1289-91, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16158063

RESUMEN

Multiple hormones controlling energy homeostasis regulate the expression of neuropeptide Y (NPY) and agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus. Nevertheless, inactivation of the genes encoding NPY and/or AgRP has no impact on food intake in mice. Here we demonstrate that induced selective ablation of AgRP-expressing neurons in adult mice results in acute reduction of feeding, demonstrating direct evidence for a critical role of these neurons in the regulation of energy homeostasis.


Asunto(s)
Núcleo Arqueado del Hipotálamo/citología , Conducta Alimentaria/fisiología , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Proteínas/metabolismo , Proteína Relacionada con Agouti , Animales , Anorexia/metabolismo , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Recuento de Células/métodos , Toxina Diftérica/farmacología , Ingestión de Alimentos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Proopiomelanocortina/deficiencia , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proteínas/genética , Factores de Tiempo , beta-Galactosidasa/biosíntesis
8.
Nucleic Acids Res ; 33(7): e67, 2005 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-15831785

RESUMEN

RNA interference through the expression of small hairpin RNA (shRNA) molecules has become a very promising tool in reverse mouse genetics as it may allow inexpensive and rapid gene function analysis in vivo. However, the prerequisites for ubiquitous and reproducible shRNA expression are not well defined. Here we show that a single copy shRNA-transgene can mediate body-wide gene silencing in mice when inserted in a defined locus of the genome. The most commonly used promoters for shRNA expression, H1 and U6, showed a comparably broad activity in this configuration. Taken together, the results define a novel approach for efficient interference with expression of defined genes in vivo. Moreover, we provide a rapid strategy for the production of gene knockdown mice combining recombinase mediated cassette exchange and tetraploid blastocyst complementation approaches.


Asunto(s)
Ratones/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Animales , Células Cultivadas , Dosificación de Gen , Humanos , Luciferasas de Luciérnaga/análisis , Luciferasas de Luciérnaga/genética , Mutagénesis Insercional , Regiones Promotoras Genéticas , Proteínas/genética , ARN no Traducido , Receptores de Superficie Celular/genética , Receptores de Leptina , Recombinasas/metabolismo , Transgenes , beta-Galactosidasa/análisis , beta-Galactosidasa/genética
9.
Diabetes ; 54(12): 3343-8, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16306348

RESUMEN

Cerebral insulin receptors play an important role in regulation of energy homeostasis and development of neurodegeneration. Accordingly, type 2 diabetes characterized by insulin resistance is associated with an increased risk of developing Alzheimer's disease. Formation of neurofibrillary tangles, which contain hyperphosphorylated tau, represents a key step in the pathogenesis of neurodegenerative diseases. Here, we directly addressed whether peripheral hyperinsulinemia as one feature of type 2 diabetes can alter in vivo cerebral insulin signaling and tau phosphorylation. Peripheral insulin stimulation rapidly increased insulin receptor tyrosine phosphorylation, mitogen-activated protein kinase and phosphatidylinositol (PI) 3-kinase pathway activation, and dose-dependent tau phosphorylation at Ser202 in the central nervous system. Phospho-FoxO1 and PI-3,4,5-phosphate immunostainings of brains from insulin-stimulated mice showed neuronal staining throughout the brain, not restricted to brain areas without functional blood-brain barrier. Importantly, in insulin-stimulated neuronal/brain-specific insulin receptor knockout mice, cerebral insulin receptor signaling and tau phosphorylation were completely abolished. Thus, peripherally injected insulin directly targets the brain and causes rapid cerebral insulin receptor signal transduction and site-specific tau phosphorylation in vivo, revealing new insights into the linkage of type 2 diabetes and neurodegeneration.


Asunto(s)
Hiperinsulinismo/fisiopatología , Proteínas tau/metabolismo , Animales , Encéfalo/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Neuropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Insulina/farmacología , Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Receptor de Insulina/efectos de los fármacos , Receptor de Insulina/fisiología , Transducción de Señal
10.
Trends Endocrinol Metab ; 16(2): 59-65, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15734146

RESUMEN

The insulin receptor (IR) is expressed in various regions of the developing and adult brain, and its functions have become the focus of recent research. Insulin enters the central nervous system (CNS) through the blood-brain barrier by receptor-mediated transport to regulate food intake, sympathetic activity and peripheral insulin action through the inhibition of hepatic gluconeogenesis and reproductive endocrinology. On a molecular level, some of the effects of insulin converge with those of the leptin signaling machinery at the point of activation of phosphatidylinositol 3-kinase (PI3K), resulting in the regulation of ATP-dependent potassium channels. Furthermore, insulin inhibits neuronal apoptosis via activation of protein kinase B in vitro, and it regulates phosphorylation of tau, metabolism of the amyloid precursor protein and clearance of beta-amyloid from the brain in vivo. These findings indicate that neuronal IR signaling has a direct role in the link between energy homeostasis, reproduction and the development of neurodegenerative diseases.


Asunto(s)
Encéfalo/fisiología , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Animales , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Homeostasis/fisiología , Humanos , Insulina/metabolismo , Insulina/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Receptor de Insulina/fisiología , Reproducción/fisiología
11.
PLoS One ; 7(2): e31487, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22319636

RESUMEN

Insulin receptor (InsR) signaling through transcription factor FoxO1 is important in the development of hypothalamic neuron feeding circuits, but knowledge about underlying mechanisms is limited. To investigate the role of InsR/FoxO1 signaling in the development and maintenance of these circuits, we surveyed the pool of hypothalamic neurons expressing Pomc mRNA in different mouse models of impaired hypothalamic InsR signaling. InsR ablation in the entire hypothalamus did not affect Pomc-neuron number at birth, but resulted in a 25% increase, most notably in the middle arcuate nucleus region, in young adults. Selective restoration of InsR expression in POMC neurons in these mice partly reversed the abnormality, resulting in a 10% decrease compared to age-matched controls. To establish whether FoxO1 signaling plays a role in this process, we examined POMC neuron number in mice with POMC-specific deletion of FoxO1, and detected a 23% decrease in age-matched animals, consistent with a cell-autonomous role of InsR/FoxO1 signaling in regulating POMC neuron number, distinct from its established role to activate Pomc transcription. These changes in Pomc cells occurred in the absence of marked changes in humoral factors or hypothalamic NPY neurons.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Hipotálamo/citología , Neuronas/citología , Proopiomelanocortina/genética , Receptor de Insulina/fisiología , Transducción de Señal/fisiología , Factores de Edad , Animales , Recuento de Células , Proteína Forkhead Box O1 , Ratones , ARN Mensajero/análisis , Transcripción Genética
12.
Obesity (Silver Spring) ; 19(11): 2149-57, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21593800

RESUMEN

Weight-loss independent mechanisms may play an important role in the improvement of glucose homeostasis after Roux-en-Y gastric bypass (RYGB). The objective of this analysis was to determine whether RYGB causes greater improvement in glucostatic parameters as compared with laparoscopic adjustable gastric banding (LAGB) or low calorie diet (LCD) after equivalent weight loss and independent of enteral nutrient passage. Study 1 recruited participants without type 2 diabetes mellitus (T2DM) who underwent LAGB (n = 8) or RYGB (n = 9). Study 2 recruited subjects with T2DM who underwent LCD (n = 7) or RYGB (n = 7). Insulin-supplemented frequently-sampled intravenous glucose tolerance test (fsIVGTT) was performed before and after equivalent weight reduction. MINMOD analysis of insulin sensitivity (Si), acute insulin response to glucose (AIRg) and C-peptide (ACPRg) response to glucose, and insulin secretion normalized to the degree of insulin resistance (disposition index (DI)) were analyzed. Weight loss was comparable in all groups (7.8 ± 0.4%). In Study 1, significant improvement of Si, ACPRg, and DI were observed only after LAGB. In Study 2, Si, ACPRg, and plasma adiponectin increased significantly in the RYGB-DM group but not in LCD. DI improved in both T2DM groups, but the absolute increase was greater after RYGB (258.2 ± 86.6 vs. 55.9 ± 19.9; P < 0.05). Antidiabetic medications were discontinued after RYGB contrasting with 55% reduction in the number of medications after LCD. No intervention affected fasting glucagon-like peptide (GLP)-1, peptide YY (PYY) or ghrelin levels. In conclusion, RYGB produced greater improvement in Si and DI compared with diet at equivalent weight loss in T2DM subjects. Such a beneficial effect was not observed in nondiabetic subjects at this early time-point.


Asunto(s)
Restricción Calórica , Derivación Gástrica/métodos , Resistencia a la Insulina , Obesidad/dietoterapia , Pérdida de Peso , Adiponectina/sangre , Adulto , Glucemia/análisis , Péptido C/metabolismo , Diabetes Mellitus Tipo 2/cirugía , Dieta Reductora , Femenino , Ghrelina/sangre , Péptido 1 Similar al Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/sangre , Insulina/metabolismo , Secreción de Insulina , Laparoscopía/métodos , Masculino , Persona de Mediana Edad , Obesidad/cirugía , Péptido YY/metabolismo
13.
Diabetes ; 59(2): 337-46, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933998

RESUMEN

OBJECTIVE: The sites of insulin action in the central nervous system that regulate glucose metabolism and energy expenditure are incompletely characterized. We have shown that mice with hypothalamic deficiency (L1) of insulin receptors (InsRs) fail to regulate hepatic glucose production (HGP) in response to insulin. RESEARCH DESIGN AND METHODS: To distinguish neurons that mediate insulin's effects on HGP from those that regulate energy homeostasis, we used targeted knock-ins to express InsRs in agouti-related protein (AgRP) or proopiomelanocortin (POMC) neurons of L1 mice. RESULTS: Restoration of insulin action in AgRP neurons normalized insulin suppression of HGP. Surprisingly, POMC-specific InsR knock-in increased energy expenditure and locomotor activity, exacerbated insulin resistance and increased HGP, associated with decreased expression of the ATP-sensitive K(+) channel (K(ATP) channel) sulfonylurea receptor 1 subunit, and decreased inhibitory synaptic contacts on POMC neurons. CONCLUSIONS: The contrasting phenotypes of InsR knock-ins in POMC and AgRP neurons suggest a branched-pathway model of hypothalamic insulin signaling in which InsR signaling in AgRP neurons decreases HGP, whereas InsR activation in POMC neurons promotes HGP and activates the melanocortinergic energy expenditure program.


Asunto(s)
Proteína Relacionada con Agouti/fisiología , Metabolismo Energético , Glucosa/biosíntesis , Hígado/metabolismo , Neuronas/fisiología , Proopiomelanocortina/genética , Proopiomelanocortina/fisiología , Receptor de Insulina/fisiología , Animales , Peso Corporal , Cartilla de ADN , Ingestión de Energía , Ayuno , Glucagón/sangre , Técnica de Clampeo de la Glucosa , Insulina/farmacología , Ratones , Ratones Transgénicos , ARN/genética , ARN/aislamiento & purificación , Receptor de Insulina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Nat Med ; 15(10): 1195-201, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19767734

RESUMEN

Reduced food intake brings about an adaptive decrease in energy expenditure that contributes to the recidivism of obesity after weight loss. Insulin and leptin inhibit food intake through actions in the central nervous system that are partly mediated by the transcription factor FoxO1. We show that FoxO1 ablation in pro-opiomelanocortin (Pomc)-expressing neurons in mice (here called Pomc-Foxo1(-/-) mice) increases Carboxypeptidase E (Cpe) expression, resulting in selective increases of alpha-melanocyte-stimulating hormone (alpha-Msh) and carboxy-cleaved beta-endorphin, the products of Cpe-dependent processing of Pomc. This neuropeptide profile is associated with decreased food intake and normal energy expenditure in Pomc-Foxo1(-/-) mice. We show that Cpe expression is downregulated by diet-induced obesity and that FoxO1 deletion offsets the decrease, protecting against weight gain. Moreover, moderate Cpe overexpression in the arcuate nucleus phenocopies features of the FoxO1 mutation. The dissociation of food intake from energy expenditure in Pomc-Foxo1(-/-) mice represents a model for therapeutic intervention in obesity and raises the possibility of targeting Cpe to develop weight loss medications.


Asunto(s)
Carboxipeptidasa H/genética , Ingestión de Alimentos/fisiología , Factores de Transcripción Forkhead/metabolismo , Neuronas/fisiología , Obesidad/genética , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Carboxipeptidasa H/metabolismo , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Transducción de Señal/genética , alfa-MSH/genética , alfa-MSH/metabolismo , betaendorfina/genética , betaendorfina/metabolismo
15.
Cell Metab ; 5(6): 438-49, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17550779

RESUMEN

Insulin action in the central nervous system regulates energy homeostasis and glucose metabolism. To define the insulin-responsive neurons that mediate these effects, we generated mice with selective inactivation of the insulin receptor (IR) in either pro-opiomelanocortin (POMC)- or agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus. While neither POMC- nor AgRP-restricted IR knockout mice exhibited altered energy homeostasis, insulin failed to normally suppress hepatic glucose production during euglycemic-hyperinsulinemic clamps in AgRP-IR knockout (IR(DeltaAgRP)) mice. These mice also exhibited reduced insulin-stimulated hepatic interleukin-6 expression and increased hepatic expression of glucose-6-phosphatase. These results directly demonstrate that insulin action in POMC and AgRP cells is not required for steady-state regulation of food intake and body weight. However, insulin action specifically in AgRP-expressing neurons does play a critical role in controlling hepatic glucose production and may provide a target for the treatment of insulin resistance in type 2 diabetes.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Glucosa/metabolismo , Insulina/farmacología , Hígado/metabolismo , Neuronas/efectos de los fármacos , Animales , Western Blotting , Peso Corporal , Electrofisiología , Femenino , Prueba de Tolerancia a la Glucosa , Glucosa-6-Fosfatasa/metabolismo , Homeostasis , Hiperinsulinismo/metabolismo , Hipotálamo/metabolismo , Técnicas para Inmunoenzimas , Integrasas/metabolismo , Interleucina-6/metabolismo , Hígado/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proopiomelanocortina/metabolismo , Receptor de Insulina/genética
16.
Proc Natl Acad Sci U S A ; 103(28): 10707-12, 2006 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-16818888

RESUMEN

Ciliary neurotrophic factor (CNTF) exerts anorectic effects by overcoming leptin resistance via activation of hypothalamic neurons. However, the exact site of CNTF action in the hypothalamus has not yet been identified. Using Cre-loxP-mediated recombination in vivo, we have selectively ablated the common cytokine signaling chain gp130, which is required for functional CNTF signaling, in proopiomelanocortin (POMC)-expressing neurons. POMC-specific gp130 knockout mice exhibit unaltered numbers of POMC cells and normal energy homeostasis under standard and high fat diet. Endotoxin (LPS) and stress-induced anorexia and adrenocorticotropin regulation were unaffected in these animals. Strikingly, the anorectic effect of centrally administered CNTF was abolished in POMC-specific gp130 knockout mice. Correspondingly, in these animals, CNTF failed to activate STAT3 phosphorylation in POMC neurons and to induce c-Fos expression in the paraventricular nucleus. These data reveal POMC neurons as a critical site of CNTF action in mediating its anorectic effect.


Asunto(s)
Anorexia/metabolismo , Factor Neurotrófico Ciliar/administración & dosificación , Factor Neurotrófico Ciliar/fisiología , Receptor gp130 de Citocinas/fisiología , Neuronas/fisiología , Proopiomelanocortina/fisiología , Transducción de Señal/fisiología , Enfermedad Aguda , Animales , Anorexia/genética , Receptor gp130 de Citocinas/genética , Femenino , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Proopiomelanocortina/biosíntesis , Ratas , Transducción de Señal/genética
17.
Biochem Biophys Res Commun ; 304(4): 812-7, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12727230

RESUMEN

AIMS: New Zealand obese (NZO) mice exhibit a polygenic syndrome of obesity, insulin resistance, and hypercholesterolemia that resembles the human metabolic syndrome. This study was performed in order to locate genes responsible for elevated serum cholesterol and to compare their effects under a standard and high fat diet. METHODS: A backcross population of NZO with SJL mice (NZO x F1(SJL x NZO)) was generated. Mice were raised on a normal or high fat diet and were monitored for 22 weeks (body weight, serum cholesterol, and blood glucose). A genome-wide scan was performed by genotyping of approximately 200 polymorphic microsatellite markers by PCR and linkage analysis was performed with the MAPMAKER program. RESULTS: In the genome-wide scan, a single susceptibility locus for hypercholesterolemia (Chol1/NZO, maximum LOD score 14.5 in a combined population of 523 backcross mice) was identified on chromosome 5. Cholesterol levels were significantly elevated in both male and female homozygous carriers of the Chol1/NZO allele. The locus maps 40cM distal of the previously described obesity locus Nob1 in the vicinity of the marker D5Mit244 and in the vicinity of hypercholesterolemia QTL previously identified in the NZB, CAST, and C57BL/6J strains. Chol1/NZO was not associated with elevated body weight, serum insulin, or hyperglycemia. The high fat diet significantly increased serum cholesterol levels, but the fat content of the diet did not alter the absolute effect of Chol1/NZO. CONCLUSIONS: Chol1/NZO is a major susceptibility locus on the distal mouse chromosome 5, which produces gender-independent hypercholesterolemia in NZO mice. The effect of Chol1/NZO was independent of the dietary fat content and was not associated with the other traits of the metabolic syndrome. Thus, it is suggested that the responsible gene might be involved in cholesterol metabolism.


Asunto(s)
Colesterol/sangre , Cromosomas de los Mamíferos , Dieta , Hipercolesterolemia/metabolismo , Obesidad/metabolismo , Sitios de Carácter Cuantitativo , Animales , Índice de Masa Corporal , Peso Corporal , Mapeo Cromosómico , Grasas de la Dieta/metabolismo , Femenino , Genoma , Genotipo , Humanos , Hipercolesterolemia/genética , Masculino , Ratones , Ratones Endogámicos , Repeticiones de Microsatélite , Obesidad/genética
18.
J Pharmacol Exp Ther ; 302(2): 442-50, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12130701

RESUMEN

In subgroups of a New Zealand obese mouse-derived backcross population with defined aberrations of glucose homeostasis, a comprehensive study of the hepatic expression of cytochrome P450 and glutathione S-transferase was performed. Three patterns of alterations in response to insulin resistance (normoglycemia/hyperinsulinemia) or diabetes (hyperglycemia/hypoinsulinemia) were observed: mRNA levels of Cyp2b9, Cyp3a16, Cyp4a14, and Gstt2 as assessed by Northern- and dot-blot analysis were increased markedly in liver from diabetic mice with no or only a slight increase in insulin resistant mice. Western-blot analysis detected the corresponding changes of the CYP2B and CYP4A proteins. In contrast, expression of Cyp2c22, Cyp2c29, and Cyp2c40 was reduced in diabetic, but normal in insulin resistant mice. These alterations were correlated with changes in serum free fatty acid levels and, therefore, seem to be mediated by the peroxisome proliferator activated receptor-alpha. Furthermore, expression of Cyp1a2, Cyp7b1, Gstm3, and Gstm6 was reduced in both diabetic and insulin resistant mice. Because this third pattern was not correlated with the alterations of serum free fatty acid levels, it seems to reflect an early alteration in the course of the disease, and may be related to the progression of the syndrome from insulin resistance to the type 2-like diabetes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Diabetes Mellitus Tipo 2/enzimología , Glutatión Transferasa/metabolismo , Hiperinsulinismo/enzimología , Hígado/enzimología , Animales , Cruzamientos Genéticos , Diabetes Mellitus Tipo 2/sangre , Ácidos Grasos no Esterificados/sangre , Hiperinsulinismo/sangre , Insulina/sangre , Isoenzimas/metabolismo , Ratones , Ratones Obesos/genética , Microcuerpos/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA