Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Magn Reson Med ; 92(4): 1363-1375, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38860514

RESUMEN

PURPOSE: Hyperpolarized 129Xe MRI benefits from non-Cartesian acquisitions that sample k-space efficiently and rapidly. However, their reconstructions are complex and burdened by decay processes unique to hyperpolarized gas. Currently used gridded reconstructions are prone to artifacts caused by magnetization decay and are ill-suited for undersampling. We present a compressed sensing (CS) reconstruction approach that incorporates magnetization decay in the forward model, thereby producing images with increased sharpness and contrast, even in undersampled data. METHODS: Radio-frequency, T1, and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ decay processes were incorporated into the forward model and solved using iterative methods including CS. The decay-modeled reconstruction was validated in simulations and then tested in 2D/3D-spiral ventilation and 3D-radial gas-exchange MRI. Quantitative metrics including apparent-SNR and sharpness were compared between gridded, CS, and twofold undersampled CS reconstructions. Observations were validated in gas-exchange data collected from 15 healthy and 25 post-hematopoietic-stem-cell-transplant participants. RESULTS: CS reconstructions in simulations yielded images with threefold increases in accuracy. CS increased sharpness and contrast for ventilation in vivo imaging and showed greater accuracy for undersampled acquisitions. CS improved gas-exchange imaging, particularly in the dissolved-phase where apparent-SNR improved, and structure was made discernable. Finally, CS showed repeatability in important global gas-exchange metrics including median dissolved-gas signal ratio and median angle between real/imaginary components. CONCLUSION: A non-Cartesian CS reconstruction approach that incorporates hyperpolarized 129Xe decay processes is presented. This approach enables improved image sharpness, contrast, and overall image quality in addition to up-to threefold undersampling. This contribution benefits all hyperpolarized gas MRI through improved accuracy and decreased scan durations.


Asunto(s)
Algoritmos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Isótopos de Xenón , Imagen por Resonancia Magnética/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Relación Señal-Ruido , Femenino , Imagenología Tridimensional/métodos , Adulto , Fantasmas de Imagen , Artefactos , Compresión de Datos/métodos , Reproducibilidad de los Resultados , Pulmón/diagnóstico por imagen , Medios de Contraste/química
2.
J Magn Reson Imaging ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257323

RESUMEN

BACKGROUND: MRI with xenon-129 gas (Xe MRI) can assess airflow obstruction and heterogeneity in lung diseases. Specifically, Xe MRI may represent a sensitive modality for future therapeutic trials of cystic fibrosis (CF) therapies. The reproducibility of Xe MRI has not yet been assessed in the context of a multi-site study. PURPOSE: To determine the same-day repeatability and 28-day reproducibility of Xe MRI in children with CF. STUDY TYPE: Four-center prospective, longitudinal. POPULATION: Thirty-eight children (18 females, 47%), median interquartile range (IQR) age 12 (9-14) years old, with mild CF (forced expiratory volume in 1 second (FEV1) ≥85% predicted). FIELD STRENGTH/SEQUENCE: 3-T, two-dimensional (2D) gradient-echo (GRE) sequence. ASSESSMENT: Xe MRI, FEV1, and nitrogen multiple-breath wash-out for lung-clearance index (LCI2.5) were performed. To assess same-day reproducibility, Xe MRI was performed twice within the first visit, and procedures were repeated at 28 days. Xe hypoventilation was quantified using ventilation-defect percentage (VDP) and reader-defect volume (RDV). For VDP, hypoventilated voxels from segmented images were identified using a threshold of <60% mean whole-lung signal and expressed as a percentage of the lung volume. For RDV, hypoventilation was identified by two trained readers and expressed as a percentage. STATISTICAL TESTS: Inter-site comparisons were conducted using Kruskal-Wallis nonparametric tests with Dunn's multiple-comparisons tests. Differences for individuals were assessed using Wilcoxon matched-pairs tests. Bland-Altman tests were used to evaluate same-day repeatability, 28-day reproducibility, and inter-reader agreement. A P-value ≤0.05 was considered significant. RESULTS: Median FEV1 %-predicted was 96.8% (86%-106%), and median LCI2.5 was 6.6 (6.3-7.4). Xe MRI had high same-day reproducibility (mean VDP difference 0.12%, 95% limits of agreement [-3.2, 3.4]; mean RDV difference 0.42% [-2.5, 3.3]). At 28 days, 26/31 participants (84%) fell within the same-day 95% limits of agreement. DATA CONCLUSION: Xe MRI may offer excellent same-day and short-term reproducibility. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.

3.
Magn Reson Med ; 89(3): 1117-1133, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36372970

RESUMEN

PURPOSE: Xenon-129 (129 Xe) gas-exchange MRI is a pulmonary-imaging technique that provides quantitative metrics for lung structure and function and is often compared to pulmonary-function tests. Unlike such tests, it does not normalize to predictive values based on demographic variables such as age. Many sites have alluded to an age dependence in gas-exchange metrics; however, a procedure for normalizing metrics has not yet been introduced. THEORY: We model healthy reference values for 129 Xe gas-exchange MRI against age using generalized additive models for location, scale, and shape (GAMLSS). GAMLSS takes signal data from an aggregated heathy-reference cohort and fits a distribution with flexible median, variation, skewness, and kurtosis to predict age-dependent centiles. This approach mirrors methods by the Global Lung Function Initiative for modeling pulmonary-function test data and applies it to binning methods widely used by the 129 Xe MRI community to interpret and quantify gas-exchange data. METHODS: Ventilation, membrane-uptake, red blood cell transfer, and red blood cell:membrane gas-exchange metrics were collected on 30 healthy subjects over an age range of 5 to 68 years. A GAMLSS model was fit against age and compared against widely used linear and generalized-linear binning 129 Xe MRI analysis schemes. RESULTS: All 4 gas-exchange metrics had significant skewness, and membrane-uptake had significant kurtosis compared to a normal distribution. Age has significant impact on distribution parameters. GAMLSS-binning produced narrower bins compared to the linear and generalized-linear binning schemes and distributed signal data closer to a normal distribution. CONCLUSION: The proposed "proof-of-concept" GAMLSS-binning approach can improve diagnostic accuracy of 129 Xe gas-exchange MRI by providing a means of modeling voxel distribution data against age.


Asunto(s)
Pulmón , Imagen por Resonancia Magnética , Niño , Humanos , Adolescente , Adulto Joven , Preescolar , Adulto , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Isótopos de Xenón , Pruebas de Función Respiratoria , Respiración , Eritrocitos
4.
Magn Reson Med ; 90(2): 473-482, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36989185

RESUMEN

PURPOSE: To mitigate signal variations caused by inhomogeneous RF and magnetization decay in hyperpolarized 129 Xe ventilation images using flip-angle maps generated from sequential 2D spiral ventilation images acquired in a breath-hold. Images and correction maps were compared with those obtained using conventional, 2D gradient-recalled echo. THEORY AND METHODS: Analytical expressions to predict signal intensity and uncertainty in flip-angle measurements were derived from the Bloch equations and validated by simulations and phantom experiments. Imaging in 129 Xe phantoms and human subjects (1 healthy, 1 cystic fibrosis) was performed using 2D gradient-recalled echo and spiral. For both sequences, consecutive images were acquired with the same slice position during a breath-hold (Cartesian scan time = 15 s; spiral scan time = 5 s). The ratio of these images was used to calculate flip-angle maps and correct intensity inhomogeneities in ventilation images. RESULTS: Mean measured flip angle showed excellent agreement with the applied flip angle in simulations (R2 = 0.99) for both sequences. Mean measured flip angle agreed well with the globally applied flip angle (∼15% difference) in 129 Xe phantoms and in vivo imaging using both sequences. Corrected images displayed reduced coil-dependent signal nonuniformity relative to uncorrected images. CONCLUSIONS: Flip-angle maps were obtained using sequentially acquired, 2D spiral, 129 Xe ventilation images. Signal intensity variations caused by RF-coil inhomogeneity can be corrected by acquiring sequential single-breath ventilation images in less than 5-s scan time. Thus, this method can be used to remove undesirable heterogeneity while preserving physiological effects on the signal distribution.


Asunto(s)
Pulmón , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Respiración , Fantasmas de Imagen , Contencion de la Respiración , Isótopos de Xenón
5.
Acad Radiol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960843

RESUMEN

RATIONALE AND OBJECTIVES: Hyperpolarized xenon (129Xe) MRI is a noninvasive method to assess pulmonary structure and function. To measure lung microstructure, diffusion-weighted imaging-commonly the apparent diffusion coefficient (ADC)-can be employed to map changes in alveolar-airspace size resulting from normal aging and pulmonary disease. However, low signal-to-noise ratio (SNR) decreases ADC measurement certainty, and biases ADC to spuriously low values. Further, these challenges are most severe in regions of the lung where alveolar simplification or emphysematous remodeling generate abnormally high ADCs. Here, we apply Global Local Higher Order Singular Value Decomposition (GLHOSVD) denoising to enhance image SNR, thereby reducing uncertainty and bias in diffusion measurements. MATERIALS AND METHODS: GLHOSVD denoising was employed in simulated images and gas phantoms with known diffusion coefficients to validate its effectiveness and optimize parameters for analysis of diffusion-weighted 129Xe MRI. GLHOSVD was applied to data from 120 subjects (34 control, 39 cystic fibrosis (CF), 27 lymphangioleiomyomatosis (LAM), and 20 asthma). Image SNR, ADC, and distributed diffusivity coefficient (DDC) were compared before and after denoising using Wilcoxon signed-rank analysis for all images. RESULTS: Denoising significantly increased SNR in simulated, phantom, and in-vivo images, showing a greater than 2-fold increase (p < 0.001) across diffusion-weighted images. Although mean ADC and DDC remained unchanged (p > 0.05), ADC and DDC standard deviation decreased significantly in denoised images (p < 0.001). CONCLUSION: When applied to diffusion-weighted 129Xe images, GLHOSVD improved image quality and allowed airspace size to be quantified in high-diffusion regions of the lungs that were previously inaccessible to measurement due to prohibitively low SNR, thus providing insights into disease pathology.

6.
Acad Radiol ; 29 Suppl 2: S145-S155, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34393064

RESUMEN

RATIONALE: There is no agreed upon method for quantifying ventilation defect percentage (VDP) with high sensitivity and specificity from hyperpolarized (HP) gas ventilation MR images in multiple pulmonary diseases for both pediatrics and adults, yet identifying such methods will be necessary for future multi-site trials. Most HP gas MRI ventilation research focuses on a specific pulmonary disease and utilizes one quantification scheme for determining VDP. Here we sought to determine the potential of different methods for quantifying VDP from HP 129Xe images in multiple pulmonary diseases through comparison of the most utilized quantification schemes: linear binning and thresholding. MATERIALS AND METHODS: HP 129Xe MRI was performed in a total of 176 subjects (125 pediatrics and 51 adults, age 20.98±16.48 years) who were either healthy controls (n = 23) or clinically diagnosed with cystic fibrosis (CF) (n = 37), lymphangioleiomyomatosis (LAM) (n = 29), asthma (n = 22), systemic juvenile idiopathic arthritis (sJIA) (n = 11), interstitial lung disease (ILD) (n = 7), or were bone marrow transplant (BMT) recipients (n = 47). HP 129Xe ventilation images were acquired during a ≤16 second breath-hold using a 2D multi-slice gradient echo sequence on a 3T Philips scanner (TR/TE 8.0/4.0ms, FA 10-12°, FOV 300 × 300mm, voxel size≈3 × 3 × 15mm). Images were analyzed using 5 different methods to quantify VDPs: linear binning (histogram normalization with binning into 6 clusters) following either linear or a variant of a nonparametric nonuniform intensity normalization algorithm (N4ITK) bias-field correction, thresholding ≤60% of the mean signal intensity with linear bias-field correction, and thresholding ≤60% and ≤75% of the mean signal intensity following N4ITK bias-field correction. Spirometry was successfully obtained in 84% of subjects. RESULTS: All quantification schemes were able to label visually identifiable ventilation defects in similar regions within all subjects. The VDPs of control subjects were significantly lower (p<0.05) compared to BMT, CF, LAM, and ILD subjects for most of the quantification methods. No one quantification scheme was better able to differentiate individual disease groups from the control group. Advanced statistical modeling of the VDP quantification schemes revealed that in comparing controls to the combined disease group, N4ITK bias-field corrected 60% thresholding had the highest predictive efficacy, sensitivity, and specificity at the VDP cut-point of 2.3%. However, compared to the thresholding quantification schemes, linear binning was able to capture and label subtle low-ventilation regions in subjects with milder obstruction, such as subjects with asthma. CONCLUSION: The difference in VDP between healthy controls and patients varied between the different disease states for all quantification methods. Although N4ITK bias-field corrected 60% thresholding was superior in separating the combined diseased group from controls, linear binning is able to better label low-ventilation regions unlike the current, 60% thresholding scheme. For future clinical trials, a consensus will need to be reached on which VDP scheme to utilize, as there are subtle advantages for each for specific disease.


Asunto(s)
Asma , Xenón , Adolescente , Adulto , Asma/diagnóstico por imagen , Niño , Preescolar , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ventilación Pulmonar , Isótopos de Xenón , Adulto Joven
7.
J Magn Reson ; 320: 106845, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33070086

RESUMEN

Continuous-flow spin exchange optical pumping (SEOP) with cryogenic accumulation is a powerful technique to generate multiple, large volumes of hyperpolarized (HP) 129Xe in rapid succession. It enables a range of studies, from dark matter tracking to preclinical and clinical MRI. Multiple analytical models based on first principles atomic physics and device-specific design features have been proposed for individual processes within HP 129Xe production. However, the modeling efforts have not yet integrated all the steps involved in practical, large volume HP 129Xe production process (e.g., alkali vapor generation, continuous-flow SEOP, and cryogenic accumulation). Here, we use a simplified analytical model that couples both SEOP and cryogenic accumulation, incorporating only two system-specific empirical parameters: the longitudinal relaxation time of the polycrystalline 129Xe "snow', T1snow, generated during cryogenic accumulation, and 2) the average Rb density during active, continuous-flow polarization. By fitting the model to polarization data collected from >140 L of 129Xe polarized across a range of flow and volume conditions, the estimates for Rb density and T1snow were 1.6 ± 0.1 × 1013 cm-3 and 84 ± 5 min, respectively - each notably less than expected based on previous literature. Together, these findings indicate that 1) earlier polarization predictions were hindered by miscalculated Rb densities, and 2) polarization is not optimized by maximizing SEOP efficiency with a low concentration 129Xe, but rather by using richer 129Xe-buffer gas blends that enable faster accumulation. Accordingly, modeling and experimentation revealed the optimal fraction of 129Xe, f, in the 129Xe-buffer gas blend was ~2%. Further, if coupled with modest increases in laser power, the model predicts liter volumes of HP 129Xe with polarizations exceeding 60% could be generated routinely in only tens of minutes.


Asunto(s)
Espectroscopía de Resonancia Magnética , Isótopos de Xenón/síntesis química , Gases , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA