Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Bioorg Med Chem Lett ; 22(10): 3392-7, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22542194

RESUMEN

A series of 2-(1H-pyrazol-1-yl)pyridines are described as inhibitors of ALK5 (TGFß receptor I kinase). Modeling compounds in the ALK5 kinase domain enabled some optimization of potency via substitutions on the pyrazole core. One of these compounds PF-03671148 gave a dose dependent reduction in TGFß induced fibrotic gene expression in human fibroblasts. A similar reduction in fibrotic gene expression was observed when PF-03671148 was applied topically in a rat wound repair model. Thus these compounds have potential utility for the prevention of dermal scarring.


Asunto(s)
Cicatriz/prevención & control , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacología , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Piel/efectos de los fármacos , Animales , Modelos Moleculares , Fosforilación , Ratas , Receptor Tipo I de Factor de Crecimiento Transformador beta
2.
Front Genet ; 10: 396, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114610

RESUMEN

Transcriptomics technologies such as next-generation sequencing and microarray platforms provide exciting opportunities for improving diagnosis and treatment of complex diseases. Transcriptomics studies often share similar hypotheses, but are carried out on different platforms, in different conditions, and with different analysis approaches. These factors, in addition to small sample sizes, can result in a lack of reproducibility. A clear understanding and unified picture of many complex diseases are still elusive, highlighting an urgent need to effectively integrate multiple transcriptomic studies for disease signatures. We have integrated more than 3,000 high-quality transcriptomic datasets in oncology, immunology, neuroscience, cardiovascular and metabolic disease, and from both public and internal sources (DiseaseLand database). We established a systematic data integration and meta-analysis approach, which can be applied in multiple disease areas to create a unified picture of the disease signature and prioritize drug targets, pathways, and compounds. In this bipolar case study, we provided an illustrative example using our approach to combine a total of 30 genome-wide gene expression studies using postmortem human brain samples. First, the studies were integrated by extracting raw FASTQ or CEL files, then undergoing the same procedures for preprocessing, normalization, and statistical inference. Second, both p-value and effect size based meta-analysis algorithms were used to identify a total of 204 differentially expressed (DE) genes (FDR < 0.05) genes in the prefrontal cortex. Among these were BDNF, VGF, WFS1, DUSP6, CRHBP, MAOA, and RELN, which have previously been implicated in bipolar disorder. Finally, pathway enrichment analysis revealed a role for GPCR, MAPK, immune, and Reelin pathways. Compound profiling analysis revealed MAPK and other inhibitors may modulate the DE genes. The ability to robustly combine and synthesize the information from multiple studies enables a more powerful understanding of this complex disease.

3.
Nat Genet ; 43(12): 1219-23, 2011 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22037554

RESUMEN

Gastric cancer is a heterogeneous disease with multiple environmental etiologies and alternative pathways of carcinogenesis. Beyond mutations in TP53, alterations in other genes or pathways account for only small subsets of the disease. We performed exome sequencing of 22 gastric cancer samples and identified previously unreported mutated genes and pathway alterations; in particular, we found genes involved in chromatin modification to be commonly mutated. A downstream validation study confirmed frequent inactivating mutations or protein deficiency of ARID1A, which encodes a member of the SWI-SNF chromatin remodeling family, in 83% of gastric cancers with microsatellite instability (MSI), 73% of those with Epstein-Barr virus (EBV) infection and 11% of those that were not infected with EBV and microsatellite stable (MSS). The mutation spectrum for ARID1A differs between molecular subtypes of gastric cancer, and mutation prevalence is negatively associated with mutations in TP53. Clinically, ARID1A alterations were associated with better prognosis in a stage-independent manner. These results reveal the genomic landscape, and highlight the importance of chromatin remodeling, in the molecular taxonomy of gastric cancer.


Asunto(s)
Exoma , Mutación , Proteínas Nucleares/genética , Neoplasias Gástricas/genética , Factores de Transcripción/genética , Adulto , Anciano , Anciano de 80 o más Años , Proteínas de Ciclo Celular/genética , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN , Femenino , Genes Relacionados con las Neoplasias , Estudios de Asociación Genética , Humanos , Uniones Intercelulares , Masculino , Inestabilidad de Microsatélites , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Análisis de Secuencia de ADN , Transducción de Señal , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/mortalidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA