Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Glia ; 71(4): 1036-1056, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36571248

RESUMEN

One form of early life stress, prenatal exposure to glucocorticoids (GCs), confers a higher risk of psychiatric and neurodevelopmental disorders in later life. Increasingly, the importance of microglia in these disorders is recognized. Studies on GCs exposure during microglial development have been limited, and there are few, if any, human studies. We established an in vitro model of ELS by continuous pre-exposure of human iPS-microglia to GCs during primitive hematopoiesis (the critical stage of iPS-microglial differentiation) and then examined how this exposure affected the microglial phenotype as they differentiated and matured to microglia, using RNA-seq analyses and functional assays. The iPS-microglia predominantly expressed glucocorticoid receptors over mineralocorticoid receptors, and in particular, the GR-α splice variant. Chronic GCs exposure during primitive hematopoiesis was able to recapitulate in vivo ELS effects. Thus, pre-exposure to prolonged GCs resulted in increased type I interferon signaling, the presence of Cyclic GMP-AMP synthase-positive (cGAS) micronuclei, cellular senescence and reduced proliferation in the matured iPS-microglia. The findings from this in vitro ELS model have ramifications for the responses of microglia in the pathogenesis of GC- mediated ELS-associated disorders such as schizophrenia, attention-deficit hyperactivity disorder and autism spectrum disorder.


Asunto(s)
Experiencias Adversas de la Infancia , Glucocorticoides , Microglía , Receptores de Glucocorticoides , Humanos , Trastorno del Espectro Autista/etiología , Inestabilidad Genómica , Glucocorticoides/efectos adversos , Glucocorticoides/metabolismo , Microglía/efectos de los fármacos , Microglía/fisiología , Células Progenitoras Mieloides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Interferón Tipo I/metabolismo
2.
Glia ; 71(4): 974-990, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36480007

RESUMEN

Triggering receptor on myeloid cells 2 (TREM2) is an innate immune receptor, upregulated on the surface of microglia associated with amyloid plaques in Alzheimer's disease (AD). Individuals heterozygous for the R47H variant of TREM2 have greatly increased risk of developing AD. We examined the effects of wild-type (WT), R47H and knock-out (KO) of human TREM2 expression in three microglial cell systems. Addition of mouse BV-2 microglia expressing R47H TREM2 to primary mouse neuronal cultures caused neuronal loss, not observed with WT TREM2. Neuronal loss was prevented by using annexin V to block exposed phosphatidylserine, an eat-me signal and ligand of TREM2, suggesting loss was mediated by microglial phagocytosis of neurons exposing phosphatidylserine. Addition of human CHME-3 microglia expressing R47H TREM2 to LUHMES neuronal-like cells also caused loss compared to WT TREM2. Expression of R47H TREM2 in BV-2 and CHME-3 microglia increased their uptake of phosphatidylserine-beads and synaptosomes versus WT TREM2. Human iPSC-derived microglia with heterozygous R47H TREM2 had increased phagocytosis of synaptosomes vs common-variant TREM2. Additionally, phosphatidylserine liposomes increased activation of human iPSC-derived microglia expressing homozygous R47H TREM2 versus common-variant TREM2. Finally, overexpression of TREM2 in CHME-3 microglia caused increased expression of cystatin F, a cysteine protease inhibitor, and knock-down of cystatin F increased CHME-3 uptake of phosphatidylserine-beads. Together, these data suggest that R47H TREM2 may increase AD risk by increasing phagocytosis of synapses and neurons via greater activation by phosphatidylserine and that WT TREM2 may decrease microglial phagocytosis of synapses and neurons via cystatin F.


Asunto(s)
Enfermedad de Alzheimer , Sinaptosomas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Cistatinas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Neuronas/patología , Fagocitosis/genética , Fosfatidilserinas/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Sinaptosomas/metabolismo , Sinaptosomas/patología
3.
Nat Rev Neurosci ; 19(8): 445-452, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29977068

RESUMEN

It is becoming increasingly apparent that microglia, the immune cells of the CNS, and their peripheral counterparts, macrophages, have a major role in normal physiology and pathology. Recent technological advances in the production of particular cell types from induced pluripotent stem cells have led to an interest in applying this methodology to the production of microglia. Here, we discuss recent advances in this area and describe how they will aid our future understanding of microglia.


Asunto(s)
Encéfalo/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Microglía/fisiología , Animales , Encéfalo/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Cultivadas , Humanos , Macrófagos/fisiología , Microglía/citología , Modelos Neurológicos , Fenotipo
4.
Glia ; 70(12): 2290-2308, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35912412

RESUMEN

The receptor Triggering Receptor Expressed on Myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases including Alzheimer's Disease and TREM2 stimulation represents a novel therapeutic opportunity. TREM2 can be activated by antibodies targeting the stalk region, most likely through receptor dimerization. Endogenous ligands of TREM2 are suggested to be negatively charged apoptotic bodies, mimicked by phosphatidylserine incorporated in liposomes and other polyanionic molecules likely binding to TREM2 IgV fold. However, there has been much discrepancy in the literature on the nature of phospholipids (PLs) that can activate TREM2 and on the stability of the corresponding liposomes over time. We describe optimized liposomes as robust agonists selective for TREM2 over TREM1 in cellular system. The detailed structure/activity relationship studies of lipid polar heads indicate that negatively charged lipid heads are required for activity and we identified the shortest maximally active PL sidechain. Optimized liposomes are active on both TREM2 common variant and TREM2 R47H mutant. Activity and selectivity were further confirmed in different native TREM2 expressing cell types including on integrated cellular responses such as stimulation of phagocytic activity. Such tool agonists will be useful in further studies of TREM2 biology in cellular systems alongside antibodies, and in the design of small molecule synthetic TREM2 agonists.


Asunto(s)
Enfermedad de Alzheimer , Liposomas , Glicoproteínas de Membrana/inmunología , Receptores Inmunológicos/inmunología , Enfermedad de Alzheimer/metabolismo , Anticuerpos/metabolismo , Encéfalo/metabolismo , Humanos , Ligandos , Microglía/metabolismo , Células Mieloides/metabolismo , Fosfatidilserinas/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo
5.
Hum Mol Genet ; 29(19): 3224-3248, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32959884

RESUMEN

Genome-wide association studies have reported that, amongst other microglial genes, variants in TREM2 can profoundly increase the incidence of developing Alzheimer's disease (AD). We have investigated the role of TREM2 in primary microglial cultures from wild type mice by using siRNA to decrease Trem2 expression, and in parallel from knock-in mice heterozygous or homozygous for the Trem2 R47H AD risk variant. The prevailing phenotype of Trem2 R47H knock-in mice was decreased expression levels of Trem2 in microglia, which resulted in decreased density of microglia in the hippocampus. Overall, primary microglia with reduced Trem2 expression, either by siRNA or from the R47H knock-in mice, displayed a similar phenotype. Comparison of the effects of decreased Trem2 expression under conditions of lipopolysaccharide (LPS) pro-inflammatory or IL-4 anti-inflammatory stimulation revealed the importance of Trem2 in driving a number of the genes up-regulated in the anti-inflammatory phenotype. RNA-seq analysis showed that IL-4 induced the expression of a program of genes including Arg1 and Ap1b1 in microglia, which showed an attenuated response to IL-4 when Trem2 expression was decreased. Genes showing a similar expression profile to Arg1 were enriched for STAT6 transcription factor recognition elements in their promoter, and Trem2 knockdown decreased levels of STAT6. LPS-induced pro-inflammatory stimulation suppressed Trem2 expression, thus preventing TREM2's anti-inflammatory drive. Given that anti-inflammatory signaling is associated with tissue repair, understanding the signaling mechanisms downstream of Trem2 in coordinating the pro- and anti-inflammatory balance of microglia, particularly mediating effects of the IL-4-regulated anti-inflammatory pathway, has important implications for fighting neurodegenerative disease.


Asunto(s)
Regulación de la Expresión Génica , Mediadores de Inflamación/metabolismo , Inflamación/inmunología , Glicoproteínas de Membrana/fisiología , Microglía/inmunología , Mutación , Receptores Inmunológicos/fisiología , Transcriptoma , Animales , Animales Recién Nacidos , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , RNA-Seq , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
6.
Brain ; 144(12): 3727-3741, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34619763

RESUMEN

Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , Enfermedad de Alzheimer/genética , COVID-19/genética , Ligamiento Genético/genética , Predisposición Genética a la Enfermedad/genética , Gravedad del Paciente , Adolescente , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , Células Cultivadas , Femenino , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/epidemiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
7.
J Neuroinflammation ; 18(1): 94, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33874957

RESUMEN

BACKGROUND: Neuroinflammation may contribute to the pathogenesis of Huntington's disease, given evidence of activated microglia and elevated levels of inflammatory molecules in disease gene carriers, even those many years from symptom onset. We have shown previously that monocytes from Huntington's disease patients are hyper-reactive to stimulation in a manner dependent on their autonomous expression of the disease-causing mutant HTT protein. To date, however, whether human microglia are similarly hyper-responsive in a cell-autonomous manner has not been determined. METHODS: Microglial-like cells were derived from human pluripotent stem cells (PSCs) expressing mutant HTT containing varying polyglutamine lengths. These included lines that are otherwise isogenic, such that any observed differences can be attributed with certainty to the disease mutation itself. Analyses by quantitative PCR and immunofluorescence microscopy respectively of key genes and protein markers were undertaken to determine whether Huntington's disease PSCs differentiated normally to a microglial fate. The resultant cultures and their supernatants were then assessed by various biochemical assays and multiplex ELISAs for viability and responses to stimulation, including the release of pro-inflammatory cytokines and reactive oxygen species. Conditioned media were applied to PSC-derived striatal neurons, and vice versa, to determine the effects that the secretomes of each cell type might have on the other. RESULTS: Human PSCs generated microglia successfully irrespective of the expression of mutant HTT. These cells, however, were hyper-reactive to stimulation in the production of pro-inflammatory cytokines such as IL-6 and TNFα. They also released elevated levels of reactive oxygen species that have neurotoxic potential. Accompanying such phenotypes, human Huntington's disease PSC-derived microglia showed increased levels of apoptosis and were more susceptible to exogenous stress. Such stress appeared to be induced by supernatants from human PSC-derived striatal neurons expressing mutant HTT with a long polyglutamine tract. CONCLUSIONS: These studies show, for the first time, that human Huntington's disease PSC-derived microglia are hyper-reactive due to their autonomous expression of mutant HTT. This provides a cellular basis for the contribution that neuroinflammation might make to Huntington's disease pathogenesis.


Asunto(s)
Enfermedad de Huntington , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Microglía/metabolismo , Microglía/patología , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular , Línea Celular , Cuerpo Estriado/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Mutación , Neuronas/metabolismo
8.
FASEB J ; 34(2): 2436-2450, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907987

RESUMEN

Loss-of-function genetic variants of triggering receptor expressed on myeloid cells 2 (TREM2) are linked with an enhanced risk of developing dementias. Microglia, the resident immune cell of the brain, express TREM2, and microglial responses are implicated in dementia pathways. In a normal surveillance state, microglia use oxidative phosphorylation for their energy supply, but rely on the ability to undergo a metabolic switch to glycolysis to allow them to perform rapid plastic responses. We investigated the role of TREM2 on the microglial metabolic function in human patient iPSC-derived microglia expressing loss of function variants in TREM2. We show that these TREM2 variant iPSC-microglia, including the Alzheimer's disease R47H risk variant, exhibit significant metabolic deficits including a reduced mitochondrial respiratory capacity and an inability to perform a glycolytic immunometabolic switch. We determined that dysregulated PPARγ/p38MAPK signaling underlies the observed phenotypic deficits in TREM2 variants and that activation of these pathways can ameliorate the metabolic deficit in these cells and consequently rescue critical microglial cellular function such as ß-Amyloid phagocytosis. These findings have ramifications for microglial focussed-treatments in AD.


Asunto(s)
Enfermedad de Alzheimer , Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas , Mutación con Pérdida de Función , Glicoproteínas de Membrana , Microglía , Receptores Inmunológicos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Microglía/patología , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
9.
Rapid Commun Mass Spectrom ; 31(2): 153-159, 2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27813239

RESUMEN

RATIONALE: Ideal biomarkers are present in readily accessible samples including plasma and cerebrospinal fluid (CSF), and are directly derived from diseased tissue, therefore likely to be of relatively low abundance. Traditional unbiased proteomic approaches for biomarker discovery have struggled to detect low-abundance markers due to the high dynamic range of proteins, the predominance of hyper-abundant proteins, and the use of data-dependent acquisition mass spectrometry (MS). To overcome these limitations and improve biomarker discovery in peripheral fluids, we have developed TMTcalibrator™; a novel MS workflow combining isobarically labelled diseased tissue digests in parallel with an appropriate set of labelled body fluids to increase the chance of identifying low-abundance, tissue-derived biomarkers. METHODS: A disease relevant cell line was labelled with TMT® in a range of concentrations generating a multi-point calibration curve. Peripheral biofluid samples were labelled with the remaining tags and quantitative analysis was performed using an Orbitrap Fusion Tribrid mass spectrometer with a Top10 CID-HCD MS3 synchronous precursor selection (SPS) method. SPS allowed direct analysis of non-depleted, unfractionated CSF samples with complete profiling of six individual samples requiring only 15 hours of MS time, equivalent to 1.5 h per sample. RESULTS: Using the TMTcalibrator™ workflow allowed the identification of several markers of microglia activation that are differentially quantified in the CSF of patients with Alzheimer's disease (AD). We report peptides from 41 proteins that have not previously been detected in the CSF, that appear to be regulated by at least 60% in AD. CONCLUSIONS: This study has demonstrated the benefits of the new TMTcalibrator™ workflow and the results suggest this is a suitable and efficient method of detecting low-abundance peptides within biological fluids. The use of TMTcalibrator™ in further biomarker discovery studies should be considered to overcome some of the limitations commonly associated with more conventional approaches. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Línea Celular , Humanos , Ratones , Fragmentos de Péptidos/líquido cefalorraquídeo
10.
Neuropathol Appl Neurobiol ; 42(5): 423-35, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26300398

RESUMEN

AIMS: Current therapies in Parkinson's disease mainly treat symptoms rather than provide effective neuroprotection. We examined the effects of safinamide (monoamine oxidase B and sodium channel blocker) on microglial activation and the degeneration of dopaminergic neurons in a rat model of PD in vivo, and on microglia in vitro. METHODS: Rats received unilateral stereotaxic injection of 6-hydroxydopamine into the medial forebrain bundle on day 0: The contralateral side served as control. Safinamide or vehicle was delivered from days 0 or 1, for 7 days, via sub-cutaneous mini-pumps. RESULTS: In vehicle-treated rats 6-hydroxydopamine caused a significant increase in the number of activated MHC-II(+) microglia compared with the contralateral side, and only 50% of the dopaminergic neurons survived in the ipsilateral SNc. In contrast, rats treated daily with safinamide 50 and 150 mg/ml (on day 0 or 1) exhibited a significantly reduced number of activated microglia (55% reduction at 150 mg/ml) and a significant protection of dopaminergic neurons (80% of neurons survived) (P < 0.001) compared with vehicle-treated controls. Rasagiline, a monoamine oxidase B inhibitor, and lamotrigine, a sodium channel blocking drug, also protected dopaminergic neurons, indicating that safinamide may act by either or both mechanisms. Safinamide also reduced the activation of microglial cells in response to lipopolysaccharide exposure in vitro. CONCLUSION: Safinamide therapy suppresses microglial activation and protects dopaminergic neurons from degeneration in the 6-hydroxydopamine model of PD, suggesting that the drug not only treats symptoms but also provides neuroprotection.


Asunto(s)
Alanina/análogos & derivados , Bencilaminas/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Alanina/farmacología , Animales , Masculino , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/patología , Trastornos Parkinsonianos/patología , Ratas , Ratas Sprague-Dawley
11.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425748

RESUMEN

Mutations in ITM2B cause familial British, Danish, Chinese and Korean dementias. In familial British dementia (FBD) a mutation in the stop codon of the ITM2B gene (also known as BRI2 ) causes a C-terminal cleavage fragment of the ITM2B/BRI2 protein to be extended by 11 amino acids. This fragment, termed amyloid-Bri (ABri), is highly insoluble and forms extracellular plaques in the brain. ABri plaques are accompanied by tau pathology, neuronal cell death and progressive dementia, with striking parallels to the aetiology and pathogenesis of Alzheimer's disease. The molecular mechanisms underpinning FBD are ill-defined. Using patient-derived induced pluripotent stem cells, we show that expression of ITM2B/BRI2 is 34-fold higher in microglia than neurons, and 15-fold higher in microglia compared with astrocytes. This cell-specific enrichment is supported by expression data from both mouse and human brain tissue. ITM2B/BRI2 protein levels are higher in iPSC-microglia compared with neurons and astrocytes. Consequently, the ABri peptide was detected in patient iPSC-derived microglial lysates and conditioned media but was undetectable in patient-derived neurons and control microglia. Pathological examination of post-mortem tissue support ABri expression in microglia that are in proximity to pre-amyloid deposits. Finally, gene co-expression analysis supports a role for ITM2B/BRI2 in disease-associated microglial responses. These data demonstrate that microglia are the major contributors to the production of amyloid forming peptides in FBD, potentially acting as instigators of neurodegeneration. Additionally, these data also suggest ITM2B/BRI2 may be part of a microglial response to disease, motivating further investigations of its role in microglial activation. This has implications for our understanding of the role of microglia and the innate immune response in the pathogenesis of FBD and other neurodegenerative dementias including Alzheimer's disease.

12.
Glia ; 60(4): 515-25, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22105777

RESUMEN

Emerging evidence suggests that p53, a tumor suppressor protein primarily involved in cancer biology, coordinates a wide range of novel functions in the CNS including the mediation of pathways underlying neurodegenerative disease pathogenesis. Moreover, an evolving concept in cell and molecular neuroscience is that glial cells are far more fundamental to disease progression than previously thought, which may occur via a noncell-autonomous mechanism that is heavily dependent on p53 activities. As a crucial hub connecting many intracellular control pathways, including cell-cycle control and apoptosis, p53 is ideally placed to coordinate the cellular response to a range of stresses. Although neurodegenerative diseases each display a distinct and diverse molecular pathology, apoptosis is a widespread hallmark feature and the multimodal capacity of the p53 system to orchestrate apoptosis and glial cell behavior highlights p53 as a potential unifying target for therapeutic intervention in neurodegeneration.


Asunto(s)
Enfermedades del Sistema Nervioso/patología , Neuroglía/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Humanos , Neuronas/metabolismo , Transducción de Señal
13.
J Neurochem ; 121(2): 287-301, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22243365

RESUMEN

Microglia express three isoforms of the NADPH oxidase, Nox1, Nox2 and Nox4, with the potential to produce superoxide (O(2) ˙(-) ). Microglia also express neurotransmitter receptors, which can modulate microglial responses. In this study, microglial activity of Nox1, Nox2 and Nox4 in primary rat cultured microglia or the rodent BV2 cell line were altered by microglial neurotransmitter receptor modulation. Glutamate, GABA or ATP triggered microglial O(2) ˙(-) production via Nox activation. Nox activation was elicited by agonists of metabotropic mGlu3 receptors and by group III receptors, by GABA(A) but not GABA(B) receptors, and by purinergic P2X(7) or P2Y(2/4) receptors but not P2Y(1) receptors, and inhibited by metabotropic glutamate receptor 5 antagonists. The neurotransmitters also modulated Nox mRNA expression and NADPH activity. The activation of Nox by BzATP or GABA promoted a neuroprotective phenotype whilst the activation of Nox by glutamate promoted a neurotoxic phenotype. Taken together, these data indicate that microglial neurotransmitter receptors can signal via Nox to promote neuroprotection or neurotoxicity. This has implications for the subsequent neurotoxic profile of microglia when neurotransmitter levels may become skewed in neurodegeneration.


Asunto(s)
Microglía/metabolismo , Microglía/fisiología , Neuronas/fisiología , Receptores de Neurotransmisores/metabolismo , Superóxidos/metabolismo , Animales , Western Blotting , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Cromatografía Líquida de Alta Presión , Citometría de Flujo , Colorantes Fluorescentes , Agonistas del GABA/farmacología , Peróxido de Hidrógeno/metabolismo , Isoenzimas/biosíntesis , Isoenzimas/genética , Ratones , NADPH Oxidasas/biosíntesis , NADPH Oxidasas/genética , Nitroazul de Tetrazolio , ARN/genética , ARN/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de GABA/efectos de los fármacos , Receptores de Glutamato/efectos de los fármacos , Receptores de Neurotransmisores/agonistas , Receptores de Neurotransmisores/antagonistas & inhibidores , Receptores Purinérgicos P2/efectos de los fármacos
14.
Neurochem Int ; 147: 105070, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34004238

RESUMEN

LRRK2 protein is expressed prominently in immune cells, cell types whose contribution to LRRK2-associated genetic Parkinson's disease (PD) is increasingly being recognised. We investigated the effect of inflammatory stimuli using RAW264.7 murine macrophage cells as model systems. A detailed time course of TLR2 and TLR4 stimulation was investigated through measuring LRRK2 phosphorylation at its specific phospho-sites, and Rab8 and Rab10 phosphorylation together with cytokine release following treatment with LPS and zymosan. LRRK2 phosphorylation at Ser935, Ser955 and Ser973 was increased significantly over untreated conditions at 4-24h in both WT-LRRK2 and T1348N-LRRK2 cell lines to similar extents although levels of Ser910 phosphorylation were maintained at higher levels throughout. Importantly we demonstrate that LPS stimulation significantly decreased phospho-Rab10 but not phospho-Rab8 levels over 4-24h in both WT-LRRK2 and T1348N-LRRK2 cell lines. The dephosphorylation of Rab10 was not attributed to its specific phosphatase, PPM1H as the levels remained unaltered with LPS treatment. MAPK phosphorylation occurred prior to LRRK2 phosphorylation which was validated by blocking TLR4 and TLR2 receptors with TAK242 or Sparstolonin B respectively. A significant decrease in basal level of TNFα release was noted in both T1348N-LRRK2 and KO-LRRK2 cell lines at 48h compared to WT-LRRK2 cell line, however LPS and zymosan treatment did not cause any significant alteration in the TNFα and IL-6 release between the three cell lines. In contrast, LPS and zymosan caused significantly lower IL-10 release in T1348N-LRRK2 and KO-LRRK2 cell lines. A significant decrease in phospho-Rab10 levels was also confirmed in human IPS-derived macrophages with TLR4 activation. Our data demonstrates for the first time that LRRK2-dependent Rab10 phosphorylation is modulated by LPS stimulation, and that cytokine release may be influenced by the status of LRRK2. These data provide further insights into the function of LRRK2 in immune response, and has relevance for understanding cellular dysfunctions when developing LRRK2-based inhibitors for clinical treatment.


Asunto(s)
Citocinas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Receptor Toll-Like 4/inmunología , Animales , Citocinas/inmunología , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/inmunología , Ratones , Mutación/efectos de los fármacos , Mutación/inmunología , Inhibidores de Proteínas Quinasas/farmacología , Receptor Toll-Like 4/metabolismo
15.
Brain Commun ; 3(2): fcab009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34704019

RESUMEN

Variants in the triggering receptor expressed on myeloid cells 2 gene are linked with an increased risk of dementia, in particular the R47Hhet triggering receptor expressed on myeloid cells 2 variant is linked to late-onset Alzheimer's disease. Using human induced pluripotent stem cells-derived microglia, we assessed whether variations in the dynamics of exosome secretion, including their components, from these cells might underlie some of this risk. We found exosome size was not altered between common variant controls and R47Hhet variants, but the amount and constitution of exosomes secreted were different. Exosome quantities were rescued by incubation with an ATP donor or with lipids via a phosphatidylserine triggering receptor expressed on myeloid cells 2 ligand. Following a lipopolysaccharide or phagocytic cell stimulus, exosomes from common variant and R47Hhet microglia were found to contain cytokines, chemokines, APOE and triggering receptor expressed on myeloid cells 2. Differences were observed in the expression of CCL22, IL-1ß and triggering receptor expressed on myeloid cells 2 between common variant and R47Hhet derived exosomes. Furthermore unlike common variant-derived exosomes, R47Hhet exosomes contained additional proteins linked to negative regulation of transcription and metabolic processes. Subsequent addition of exosomes to stressed neurones showed R47Hhet-derived exosomes to be less protective. These data have ramifications for the responses of microglia in Alzheimer's disease and may point to further targets for therapeutic intervention.

16.
Sci Rep ; 11(1): 13316, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172778

RESUMEN

The R47H variant of the microglial membrane receptor TREM2 is linked to increased risk of late onset Alzheimer's disease. Human induced pluripotent stem cell derived microglia (iPS-Mg) from patient iPSC lines expressing the AD-linked R47Hhet TREM2 variant, common variant (Cv) or an R47Hhom CRISPR edited line and its isogeneic control, demonstrated that R47H-expressing iPS-Mg expressed a deficit in signal transduction in response to the TREM2 endogenous ligand phosphatidylserine with reduced pSYK-pERK1/2 signalling and a reduced NLRP3 inflammasome response, (including ASC speck formation, Caspase-1 activation and IL-1beta secretion). Apoptotic cell phagocytosis and soluble TREM2 shedding were unaltered, suggesting a disjoint between these pathways and the signalling cascades downstream of TREM2 in R47H-expressing iPS-Mg, whilst metabolic deficits in glycolytic capacity and maximum respiration were reversed when R47H expressing iPS-Mg were exposed to PS+ expressing cells. These findings suggest that R47H-expressing microglia are unable to respond fully to cell damage signals such as phosphatidylserine, which may contribute to the progression of neurodegeneration in late-onset AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Inflamasomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal/fisiología , Encéfalo/metabolismo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fagocitosis/fisiología
17.
J Neurochem ; 112(2): 552-63, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19895660

RESUMEN

Microglial activation can lead to microglial apoptosis, which may serve to remove highly reactive and possibly neurotoxic microglia. However the loss of microglia may have consequences for future recovery, protection and repair. P53, a nuclear phosphoprotein transcription factor, is critical for activating the expression of genes involved in cell-cycle arrest and stress-induced apoptosis. In neurodegenerative diseases the expression of p53 is significantly increased in glial cells, and microglial numbers fall. Following activation with chromogranin A (100 nM), or beta-amyloid(25-35), (10 microM), microglia became apoptotic. Furthermore, p53 expression was enhanced, peaking at 4-6 h after exposure to activators. The p53 transcription inhibitor, pifithrin-alpha, (10 microM) significantly reduced the expression of p53 in microglia and significantly modulated the levels of microglial apoptosis induced by activation. Lithium chloride (5 mM), which can modulate p53-mediated pathways, also reduced p53 expression and reduced microglial apoptosis suggesting glycogen synthase kinase-3 plays a role. Regulating p53 pathways modulated microglial inducible nitric oxide synthase expression and tumour necrosis factor alpha secretion. Inhibiting p53 mediated microglial apoptosis prevented microglial neurotoxicity suggesting targeting of p53-mediated pathways in microglia may have therapeutic benefit in Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Fragmentos de Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Benzotiazoles/farmacología , Células Cultivadas , Cerebelo/citología , Cromogranina A/farmacología , Interacciones Farmacológicas , Ensayo de Inmunoadsorción Enzimática/métodos , Cloruro de Litio/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polisacáridos/farmacología , Ratas , Ratas Wistar , Factores de Tiempo , Tolueno/análogos & derivados , Tolueno/farmacología , Factor de Transcripción CHOP/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores
18.
J Neurochem ; 109(3): 694-705, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19187440

RESUMEN

Microglial activation by blood-borne factors following blood-brain barrier damage may play a significant role in subsequent neuropathogenesis of several neurodegenerative diseases. Exposure of primary cultured rat brain microglia to pure, fatty acid- and lipid-deficient rat serum albumin or fraction V, (fatty acid and lipid-containing rat serum albumin), caused inducible nitric oxide synthase (iNOS) expression, glutamate release, tumour necrosis factor alpha (TNFalpha) and transforming growth factor-beta1 release. iNOS expression was attenuated by the MAPK/extracellular signal-regulated kinase pathway inhibitor U0126 and the phosphorylated forms of extracellular signal-regulated kinase 1 and 2 were detectable in microglia treated with albumin or fraction V. Glutamate release was prevented by l-alpha-aminoadipate and glutathione levels in microglia rose on exposure to albumin. Conditioned medium from microglia exposed to albumin or fraction V was neurotoxic. Peripheral macrophages were resistant to the effects of albumin but both microglia and macrophages responded to lipopolysaccharide, which induced interleukin-1 beta and tumour necrosis factor alpha release, cyclooxygenase-2 and iNOS expression in both cell types, indicating a discrete desensitised pathway in macrophages for albumin which was not desensitised in microglia. Thus, exposure of microglia in the brain to albumin may contribute to neuronal damage following blood-brain barrier breakdown and point to resident microglia rather than infiltrating macrophages as therapeutic targets.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Microglía/efectos de los fármacos , Albúmina Sérica/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Animales Recién Nacidos , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Medios de Cultivo Condicionados/farmacología , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/química , Microglía/química , Neuronas/efectos de los fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Polimixina B/farmacología , Ratas , Ratas Wistar , Factores de Tiempo
19.
Trends Neurosci ; 30(10): 527-35, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17904651

RESUMEN

Microglia are the intrinsic immune cells of the brain and express chemokine and cytokine receptors that interact with the peripheral immune cells. Recent studies have indicated that microglia also respond to the brain's classical signalling substances, the neurotransmitters. Here, we review the evidence for the expression of neurotransmitter receptors on microglia and the consequences of this receptor activation for microglial behaviour. It is evident that neurotransmitters instruct microglia to perform distinct types of responses, such as triggering an inflammatory cascade or acquiring a neuroprotective phenotype. Understanding how microglia respond to different neurotransmitters will thus have important implications for controlling the reactivity of these cells in acute injury, as well as for treating chronic neurodegenerative diseases.


Asunto(s)
Microglía/metabolismo , Receptores de Neurotransmisores/fisiología , Animales , Microglía/efectos de los fármacos , Modelos Biológicos , Neurotransmisores/farmacología
20.
Brain Commun ; 1(1): fcz024, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32395715

RESUMEN

Mutations in presenilin-1 (PSEN1), encoding the catalytic subunit of the amyloid precursor protein-processing enzyme γ-secretase, cause familial Alzheimer's disease. However, the mechanism of disease is yet to be fully understood and it remains contentious whether mutations exert their effects predominantly through gain or loss of function. To address this question, we generated an isogenic allelic series for the PSEN1 mutation intron 4 deletion; represented by control, heterozygous and homozygous mutant induced pluripotent stem cells in addition to a presenilin-1 knockout line. Induced pluripotent stem cell-derived cortical neurons reveal reduced, yet detectable amyloid-beta levels in the presenilin-1 knockout line, and a mutant gene dosage-dependent defect in amyloid precursor protein processing in PSEN1 intron 4 deletion lines, consistent with reduced processivity of γ-secretase. The different effects of presenilin-1 knockout and the PSEN1 intron 4 deletion mutation on amyloid precursor protein-C99 fragment accumulation, nicastrin maturation and amyloid-beta peptide generation support distinct consequences of familial Alzheimer's diseaseassociated mutations and knockout of presenilin-1 on the function of γ-secretase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA