Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Space Res ; 27(9): 1529-34, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11695432

RESUMEN

Since 1990, the orbital complex MIR has witnessed several incubator experiments for determination of spaceflight effects on embryogenesis of Japanese quail. First viable chicks who had completed the whole embryological cycle in MIR microgravity hatched out in 1990; it became clear that newborns would not be able to adapt to microgravity unaided. There were 8 successful incubations of chicks in the period from 1990 to 1999. In 1995-1997 the MIR-NASA space science program united Russian and US investigators. As a result, experiments Greenhouse-1 and 2 were performed with an effort to grow super dwarf wheat from seed to seed, and experiment Greenhouse-3 aimed at receiving two successive generations of Brassica rapa. But results of these experiments could not be used for definitive conclusions concerning effects of spaceflight on plant ontogenesis and, therefore, experiments Greenhouse-4 and 5 were staged within the framework of the Russian national space program. The experiments finally yielded wheat seeds. Some of the seeds was left on the space station and, being planted, gave viable seedlings which, in their turn, produced the second crop of space seeds.


Asunto(s)
Coturnix/embriología , Sistemas de Manutención de la Vida , Desarrollo de la Planta , Vuelo Espacial , Ingravidez , Adaptación Fisiológica , Animales , Brassica , Coturnix/crecimiento & desarrollo , Sistemas Ecológicos Cerrados , Femenino , Lactuca , Masculino , Triticum
2.
Adv Space Res ; 18(4-5): 225-32, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-11538801

RESUMEN

The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]


Asunto(s)
Sistemas Ecológicos Cerrados , Sistemas de Manutención de la Vida/instrumentación , Nave Espacial/instrumentación , Triticum/crecimiento & desarrollo , Respiración de la Célula , Sistemas de Computación , Ambiente Controlado , Monitoreo del Ambiente , Cooperación Internacional , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proyectos de Investigación , Federación de Rusia , Triticum/metabolismo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA