Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38745558

RESUMEN

Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which, in turn, modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (n = 149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.


Asunto(s)
Nivel de Alerta , Encéfalo , Cognición , Conectoma , Imagen por Resonancia Magnética , Descanso , Humanos , Nivel de Alerta/fisiología , Cognición/fisiología , Masculino , Femenino , Conectoma/métodos , Adulto , Descanso/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/fisiología , Vías Nerviosas/diagnóstico por imagen
2.
J Neurophysiol ; 114(1): 505-19, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25855698

RESUMEN

Electrophysiological mass potentials show complex spectral changes upon neuronal activation. However, it is unknown to what extent these complex band-limited changes are interrelated or, alternatively, reflect separate neuronal processes. To address this question, intracranial electrocorticograms (ECoG) responses were recorded in patients engaged in visuomotor tasks. We found that in the 10- to 100-Hz frequency range there was a significant reduction in the exponent χ of the 1/f(χ) component of the spectrum associated with neuronal activation. In a minority of electrodes showing particularly high activations the exponent reduction was associated with specific band-limited power modulations: emergence of a high gamma (80-100 Hz) and a decrease in the alpha (9-12 Hz) peaks. Importantly, the peaks' height was correlated with the 1/f(χ) exponent on activation. Control simulation ruled out the possibility that the change in 1/f(χ) exponent was a consequence of the analysis procedure. These results reveal a new global, cross-frequency (10-100 Hz) neuronal process reflected in a significant reduction of the power spectrum slope of the ECoG signal.


Asunto(s)
Corteza Cerebral/fisiología , Actividad Motora/fisiología , Percepción Visual/fisiología , Adulto , Ritmo alfa , Percepción Auditiva/fisiología , Electroencefalografía , Epilepsia/fisiopatología , Epilepsia/cirugía , Femenino , Ritmo Gamma , Humanos , Masculino , Pruebas Neuropsicológicas , Reconocimiento en Psicología/fisiología , Procesamiento de Señales Asistido por Computador
3.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617344

RESUMEN

Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which in turn modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (N=149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.

4.
Nat Commun ; 15(1): 5720, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977709

RESUMEN

Sensory inputs enter a constantly active brain, whose state is always changing from one moment to the next. Currently, little is known about how ongoing, spontaneous brain activity participates in online task processing. We employed 7 Tesla fMRI and a threshold-level visual perception task to probe the effects of prestimulus ongoing brain activity on perceptual decision-making and conscious recognition. Prestimulus activity originating from distributed brain regions, including visual cortices and regions of the default-mode and cingulo-opercular networks, exerted a diverse set of effects on the sensitivity and criterion of conscious recognition, and categorization performance. We further elucidate the mechanisms underlying these behavioral effects, revealing how prestimulus activity modulates multiple aspects of stimulus processing in highly specific and network-dependent manners. These findings reveal heretofore unknown network mechanisms underlying ongoing brain activity's influence on conscious perception, and may hold implications for understanding the precise roles of spontaneous activity in other brain functions.


Asunto(s)
Mapeo Encefálico , Encéfalo , Estado de Conciencia , Imagen por Resonancia Magnética , Percepción Visual , Humanos , Percepción Visual/fisiología , Masculino , Estado de Conciencia/fisiología , Femenino , Adulto , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Estimulación Luminosa , Toma de Decisiones/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen
5.
Elife ; 122023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184213

RESUMEN

While there is a wealth of knowledge about core object recognition-our ability to recognize clear, high-contrast object images-how the brain accomplishes object recognition tasks under increased uncertainty remains poorly understood. We investigated the spatiotemporal neural dynamics underlying object recognition under increased uncertainty by combining MEG and 7 Tesla (7T) fMRI in humans during a threshold-level object recognition task. We observed an early, parallel rise of recognition-related signals across ventral visual and frontoparietal regions that preceded the emergence of category-related information. Recognition-related signals in ventral visual regions were best explained by a two-state representational format whereby brain activity bifurcated for recognized and unrecognized images. By contrast, recognition-related signals in frontoparietal regions exhibited a reduced representational space for recognized images, yet with sharper category information. These results provide a spatiotemporally resolved view of neural activity supporting object recognition under uncertainty, revealing a pattern distinct from that underlying core object recognition.


Asunto(s)
Reconocimiento Visual de Modelos , Percepción Visual , Humanos , Incertidumbre , Imagen por Resonancia Magnética/métodos , Reconocimiento en Psicología , Mapeo Encefálico/métodos , Estimulación Luminosa/métodos
6.
Elife ; 102021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34463255

RESUMEN

Arousal levels perpetually rise and fall spontaneously. How markers of arousal-pupil size and frequency content of brain activity-relate to each other and influence behavior in humans is poorly understood. We simultaneously monitored magnetoencephalography and pupil in healthy volunteers at rest and during a visual perceptual decision-making task. Spontaneously varying pupil size correlates with power of brain activity in most frequency bands across large-scale resting state cortical networks. Pupil size recorded at prestimulus baseline correlates with subsequent shifts in detection bias (c) and sensitivity (d'). When dissociated from pupil-linked state, prestimulus spectral power of resting state networks still predicts perceptual behavior. Fast spontaneous pupil constriction and dilation correlate with large-scale brain activity as well but not perceptual behavior. Our results illuminate the relation between central and peripheral arousal markers and their respective roles in human perceptual decision-making.


Asunto(s)
Nivel de Alerta , Encéfalo/fisiología , Pupila/fisiología , Conducta , Toma de Decisiones , Humanos , Magnetoencefalografía , Estimulación Luminosa
7.
Nat Commun ; 12(1): 2930, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006884

RESUMEN

The neural mechanisms underlying conscious recognition remain unclear, particularly the roles played by the prefrontal cortex, deactivated brain areas and subcortical regions. We investigated neural activity during conscious object recognition using 7 Tesla fMRI while human participants viewed object images presented at liminal contrasts. Here, we show both recognized and unrecognized images recruit widely distributed cortical and subcortical regions; however, recognized images elicit enhanced activation of visual, frontoparietal, and subcortical networks and stronger deactivation of the default-mode network. For recognized images, object category information can be decoded from all of the involved cortical networks but not from subcortical regions. Phase-scrambled images trigger strong involvement of inferior frontal junction, anterior cingulate cortex and default-mode network, implicating these regions in inferential processing under increased uncertainty. Our results indicate that content-specific activity in both activated and deactivated cortical networks and non-content-specific subcortical activity support conscious recognition.


Asunto(s)
Encéfalo/fisiología , Corteza Cerebral/fisiología , Estado de Conciencia/fisiología , Reconocimiento en Psicología/fisiología , Corteza Visual/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Estimulación Luminosa/métodos , Corteza Visual/diagnóstico por imagen , Adulto Joven
8.
Nat Commun ; 10(1): 3910, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477706

RESUMEN

Vision relies on both specific knowledge of visual attributes, such as object categories, and general brain states, such as those reflecting arousal. We hypothesized that these phenomena independently influence recognition of forthcoming stimuli through distinct processes reflected in spontaneous neural activity. Here, we recorded magnetoencephalographic (MEG) activity in participants (N = 24) who viewed images of objects presented at recognition threshold. Using multivariate analysis applied to sensor-level activity patterns recorded before stimulus presentation, we identified two neural processes influencing subsequent subjective recognition: a general process, which disregards stimulus category and correlates with pupil size, and a specific process, which facilitates category-specific recognition. The two processes are doubly-dissociable: the general process correlates with changes in criterion but not in sensitivity, whereas the specific process correlates with changes in sensitivity but not in criterion. Our findings reveal distinct mechanisms of how spontaneous neural activity influences perception and provide a framework to integrate previous findings.


Asunto(s)
Reconocimiento Visual de Modelos/fisiología , Visión Ocular/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Adulto , Algoritmos , Femenino , Humanos , Magnetoencefalografía , Masculino , Modelos Neurológicos , Estimulación Luminosa/métodos , Adulto Joven
9.
Curr Biol ; 27(2): 155-165, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28041794

RESUMEN

An inherent limitation of human visual system research stems from its reliance on highly controlled laboratory conditions. Visual processing in the real world differs substantially from such controlled conditions. In particular, during natural vision, we continuously sample the dynamic environment by variable eye movements that lead to inherent instability of the optical image. The neuronal mechanism by which human perception remains stable under these natural conditions remains unknown. Here, we examined a neural mechanism that may contribute to such stability, i.e., the extent to which neuronal responses remain invariant to oculomotor parameters and viewing conditions. To this end, we introduce an experimental paradigm in which intracranial brain activity, a video of the real-life visual scene, and free oculomotor behavior were simultaneously recorded in human patients. Our results reveal, in high-order visual areas, a remarkable level of neural invariance to the length of eye fixations and lack of evidence for a saccade-related neuronal signature. Thus, neuronal responses, while showing high selectivity to the category of visual images, manifested stable "iconic" dynamics. This property of invariance to fixation onset and duration emerged only in high-order visual representations. In early visual cortex, the fixation onset was accompanied with suppressive neural signal, and duration of neuronal responses was largely determined by the fixation times. These results uncover unique neuronal dynamics in high-order ventral stream visual areas that could play an important role in achieving perceptual stability, despite the drastic changes introduced by oculomotor behavior in real life.


Asunto(s)
Epilepsia/fisiopatología , Movimientos Oculares/fisiología , Fijación Ocular/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Humanos , Estimulación Luminosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA