RESUMEN
Microorganisms living in and on macroorganisms may produce microbial volatile compounds (mVOCs) that characterise organismal odours. The mVOCs might thereby provide a reliable cue to carnivorous enemies in locating their host or prey. Parasitism by parasitoid wasps might alter the microbiome of their caterpillar host, affecting organismal odours and interactions with insects of higher trophic levels such as hyperparasitoids. Hyperparasitoids parasitise larvae or pupae of parasitoids, which are often concealed or inconspicuous. Odours of parasitised caterpillars aid them to locate their host, but the origin of these odours and its relationship to the caterpillar microbiome are unknown. Here, we analysed the odours and microbiome of the large cabbage white caterpillar Pieris brassicae in relation to parasitism by its endoparasitoid Cotesia glomerata. We identified how bacterial presence in and on the caterpillars is correlated with caterpillar odours and tested the attractiveness of parasitised and unparasitised caterpillars to the hyperparasitoid Baryscapus galactopus. We manipulated the presence of the external microbiome and the transient internal microbiome of caterpillars to identify the microbial origin of odours. We found that parasitism by C. glomerata led to the production of five characteristic volatile products and significantly affected the internal and external microbiome of the caterpillar, which were both found to have a significant correlation with caterpillar odours. The preference of the hyperparasitoid was correlated with the presence of the external microbiome. Likely, the changes in external microbiome and body odour after parasitism were driven by the resident internal microbiome of caterpillars, where the bacterium Wolbachia sp. was only present after parasitism. Micro-injection of Wolbachia in unparasitised caterpillars increased hyperparasitoid attraction to the caterpillars compared to untreated caterpillars, while no differences were found compared to parasitised caterpillars. In conclusion, our results indicate that host-parasite interactions can affect multi-trophic interactions and hyperparasitoid olfaction through alterations of the microbiome.
Asunto(s)
Mariposas Diurnas , Avispas , Animales , Odorantes , Larva , Mariposas Diurnas/parasitología , Avispas/parasitología , Interacciones Huésped-ParásitosRESUMEN
Parasitoids induce physiological changes in their herbivorous hosts that affect how plants respond to herbivory. The signature of parasitoids on induced plant responses to feeding by parasitized herbivores indirectly impacts insect communities interacting with the plant. The effect may extend to parasitoids and cause indirect interaction between parasitoids that develop inside different herbivore hosts sharing the food plant. However, this type of interactions among parasitoid larvae has received very little attention. In this study, we investigated sequential and simultaneous plant-mediated interactions among two host-parasitoid systems feeding on Brassica oleracea plants: Mamestra brassicae parasitized by Microplitis mediator and Pieris rapae parasitized by Cotesia rubecula. We measured the mortality, development time, and weight of unparasitized herbivores and performance of parasitoids that had developed inside the two herbivore species when sharing the food plant either simultaneously or sequentially. Plant induction by parasitized or unparasitized hosts had no significant effect on the performance of the two herbivore host species. In contrast, the two parasitoid species had asymmetrical indirect plant-mediated effects on each other's performance. Cotesia rubecula weight was 15% higher on plants induced by M. mediator-parasitized hosts, compared to control plants. In addition, M. mediator development time was reduced by 30% on plants induced by conspecific but not heterospecific parasitoids, compared to plants induced by its unparasitized host. Contrary to sequential feeding, parasitoids had no effect on each other's performance when feeding simultaneously. These results reveal that indirect plant-mediated interactions among parasitoid larvae could involve any parasitoid species whose hosts share a food plant.
Asunto(s)
Brassica , Mariposas Diurnas , Avispas , Animales , Avispas/fisiología , Interacciones Huésped-Parásitos , Larva/fisiología , Mariposas Diurnas/fisiología , HerbivoriaRESUMEN
In response to herbivory, most plant species adjust their chemical and morphological phenotype to acquire induced resistance to the attacking herbivore. Induced resistance may be an optimal defence strategy that allows plants to reduce metabolic costs of resistance in the absence of herbivores, allocate resistance to the most valuable plant tissues and tailor its response to the pattern of attack by multiple herbivore species. Moreover, plasticity in resistance decreases the potential that herbivores adapt to specific plant resistance traits and need to deal with a moving target of variable plant quality. Induced resistance additionally allows plants to provide information to other community members to attract natural enemies of its herbivore attacker or inform related neighbouring plants of pending herbivore attack. Despite the clear evolutionary benefits of induced resistance in plants, crop protection strategies to herbivore pests have not exploited the full potential of induced resistance for agriculture. Here, we present evidence that induced resistance offers strong potential to enhance resistance and resilience of crops to (multi-) herbivore attack. Specifically, induced resistance promotes plant plasticity to cope with multiple herbivore species by plasticity in growth and resistance, maximizes biological control by attracting natural enemies and, enhances associational resistance of the plant stand in favour of yield. Induced resistance may be further harnessed by soil quality, microbial communities and associational resistance offered by crop mixtures. In the transition to more sustainable ecology-based cropping systems that have strongly reduced pesticide and fertilizer input, induced resistance may prove to be an invaluable trait in breeding for crop resilience.
Asunto(s)
Productos Agrícolas , Herbivoria , Herbivoria/fisiología , Agricultura , Suelo , Evolución BiológicaRESUMEN
Hyperparasitoids are some of the most diverse members of insect food webs. True hyperparasitoids parasitize the larvae of other parasitoids, reaching these larvae with their ovipositor through the herbivore that hosts the parasitoid larva. During pupation, primary parasitoids also may be attacked by pseudohyperparasitoids that lay their eggs on the parasitoid (pre)pupae. By attacking primary parasitoids, hyperparasitoids may affect herbivore population dynamics, and they have been identified as a major challenge in biological control. Over the past decades, research, especially on aphid- and caterpillar-associated hyperparasitoids, has revealed that hyperparasitoids challenge rules on nutrient use efficiency in trophic chains, account for herbivore outbreaks, or stabilize competitive interactions in lower trophic levels, and they may use cues derived from complex interaction networks to locate their hosts. This review focuses on the fascinating ecology of hyperparasitoids related to how they exploit and locate their often inconspicuous hosts and the insect community processes in which hyperparasitoids are prominent players.
Asunto(s)
Avispas , Animales , Ecología , Cadena Alimentaria , Interacciones Huésped-Parásitos , LarvaRESUMEN
The phenotypic plasticity of flowering plants in response to herbivore damage to vegetative tissues can affect plant interactions with flower-feeding organisms. Such induced systemic responses are probably regulated by defence-related phytohormones that signal flowers to alter secondary chemistry that affects resistance to florivores. Current knowledge on the effects of damage to vegetative tissues on plant interactions with florivores and the underlying mechanisms is limited. We compared the preference and performance of two florivores on flowering Brassica nigra plants damaged by one of three herbivores feeding from roots or leaves. To investigate the underlying mechanisms, we quantified expression patterns of marker genes for defence-related phytohormonal pathways, and concentrations of phytohormones and glucosinolates in buds and flowers. Florivores displayed contrasting preferences for plants damaged by herbivores feeding on roots and leaves. Chewing florivores performed better on plants damaged by folivores, but worse on plants damaged by the root herbivore. Chewing root and foliar herbivory led to specific induced changes in the phytohormone profile of buds and flowers. This resulted in increased glucosinolate concentrations for leaf-damaged plants, and decreased glucosinolate concentrations for root-damaged plants. The outcome of herbivore-herbivore interactions spanning from vegetative tissues to floral tissues is unique for the inducing root/leaf herbivore and receiving florivore combination.
Asunto(s)
Flores , Herbivoria , Flores/fisiología , Planta de la Mostaza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismoRESUMEN
In nature, plants interact with multiple insect herbivores that may arrive simultaneously or sequentially. There is extensive knowledge on how plants defend themselves against single or dual attack. However, we lack information on how plants defend against the attack of multiple herbivores that arrive sequentially. In this study, we investigated whether Brassica nigra L. plants are able to defend themselves against caterpillars of the late-arriving herbivore Plutella xylostella L., when plants had been previously exposed to sequential attack by four other herbivores (P. xylostella, Athalia rosae, Myzus persicae and Brevicoryne brassicae). We manipulated the order of arrival and the history of attack by four herbivores to investigate which patterns in sequential herbivory determine resistance against the fifth attacker. We recorded that history of sequential herbivore attack differentially affected the capability of B. nigra plants to defend themselves against caterpillars of P. xylostella. Caterpillars gained less weight on plants attacked by a sequence of four episodes of attack by P. xylostella compared to performance on plants that were not previously damaged by herbivores. The number of times the plant was attacked by herbivores of the same feeding guild, the identity of the first attacker, the identity and the guild of the last attacker as well as the order of attackers within the sequence of multiple herbivores influenced the growth of the subsequent herbivory. In conclusion, this study shows that history of sequential attack is an important factor determining plant resistance to herbivores.
Asunto(s)
Áfidos , Himenópteros , Animales , Herbivoria , Insectos , Planta de la MostazaRESUMEN
As a result of co-evolution between plants and herbivores, related plants often interact with similar herbivore communities. Variation in plant-herbivore interactions is determined by variation in underlying functional traits and by ecological and stochastic processes. Hence, typically, only a subset of possible interactions is realised on individual plants. We show that insect herbivore communities assembling on individual plants are structured by plant phylogeny among 12 species in two phylogenetic lineages of Brassicaceae. This community sorting to plant phylogeny was retained when splitting the community according to herbivore feeding guilds. Relative abundance of herbivores as well as the size of the community structured community dissimilarity among plant species. Importantly, the amount of intraspecific variation in realised plant-herbivore interactions is also phylogenetically structured. We argue that variability in realised interactions that are not directly structured by plant traits is ecologically relevant and must be considered in the evolution of plant defences.
Asunto(s)
Brassicaceae , Herbivoria , Animales , Insectos , Fenotipo , FilogeniaRESUMEN
Plants are often attacked by multiple insect herbivores. How plants deal with an increasing richness of attackers from a single or multiple feeding guilds is poorly understood. We subjected black mustard (Brassica nigra) plants to 51 treatments representing attack by an increasing species richness (one, two or four species) of either phloem feeders, leaf chewers, or a mix of both feeding guilds when keeping total density of attackers constant and studied how this affects plant resistance to subsequent attack by caterpillars of the diamondback moth (Plutella xylostella). Increased richness in phloem-feeding attackers compromised resistance to P. xylostella. By contrast, leaf chewers induced a stronger resistance to subsequent attack by caterpillars of P. xylostella while species richness did not play a significant role for chewing herbivore induced responses. Attack by a mix of herbivores from different feeding guilds resulted in plant resistance similar to resistance levels of plants that were not previously exposed to herbivory. We conclude that B. nigra plants channel their defence responses stronger towards a feeding-guild specific response when under multi-species attack by herbivores of the same feeding guild, but integrate responses when simultaneously confronted with a mix of herbivores from different feeding guilds.
Asunto(s)
Herbivoria , Mariposas Nocturnas , Animales , Larva , Planta de la Mostaza , FloemaRESUMEN
Evolutionary arms-races between plants and insect herbivores have long been proposed to generate key innovations such as plant toxins and detoxification mechanisms that can drive diversification of the interacting species. A novel front-line of plant defence is the killing of herbivorous insect eggs. We test whether an egg-killing plant trait has an evolutionary basis in such a plant-insect arms-race. Within the crucifer family (Brassicaceae), some species express a hypersensitive response (HR)-like necrosis underneath butterfly eggs (Pieridae) that leads to eggs desiccating or falling off the plant. We studied the phylogenetic distribution of this trait, its egg-killing effect on and elicitation by butterflies, by screening 31 Brassicales species, and nine Pieridae species. We show a clade-specific induction of strong, egg-killing HR-like necrosis mainly in species of the Brassiceae tribe including Brassica crops and close relatives. The necrosis is strongly elicited by pierid butterflies that are specialists of crucifers. Furthermore, HR-like necrosis is linked to PR1 defence gene expression, accumulation of reactive oxygen species and cell death, eventually leading to egg-killing. Our findings suggest that the plants' egg-killing trait is a new front on the evolutionary arms-race between Brassicaceae and pierid butterflies beyond the well-studied plant toxins that have evolved against their caterpillars.
Asunto(s)
Mariposas Diurnas , Animales , Herbivoria , Larva , FilogeniaRESUMEN
There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbour a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behaviour. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here, we provide the first evidence of a parasitoid-associated symbiont belonging to the group of ichnoviruses which affects the strength of plant-insect interactions. A comparative proteomic analysis shows that, upon parasitoid injection of calyx fluid containing ichnovirus particles, the composition of salivary glands of caterpillars changes both qualitatively (presence of two viral-encoded proteins) and quantitatively (abundance of several caterpillar-resident enzymes, including elicitors such as glucose oxidase). In turn, plant phenotypic changes triggered by the altered composition of caterpillar oral secretions affect the performance of herbivores. Ichnovirus manipulation of plant responses to herbivory leads to benefits for their parasitoid partners in terms of reduced developmental time within the parasitized caterpillar. Interestingly, plant-mediated ichnovirus-induced effects also enhance the performances of unparasitized herbivores which in natural conditions may feed alongside parasitized ones. We discuss these findings in the context of ecological costs imposed to the plant by the viral symbiont of the parasitoid. Our results provide intriguing novel findings about the role played by carnivore-associated symbionts on plant-insect-parasitoid systems and underline the importance of placing mutualistic associations in an ecological perspective.
Asunto(s)
Polydnaviridae , Avispas , Animales , Herbivoria , Interacciones Huésped-Parásitos , Larva , ProteómicaRESUMEN
Symbiotic relationships may provide organisms with key innovations that aid in the establishment of new niches. For example, during oviposition, some species of parasitoid wasps, whose larvae develop inside the bodies of other insects, inject polydnaviruses into their hosts. These symbiotic viruses disrupt host immune responses, allowing the parasitoid's progeny to survive. Here we show that symbiotic polydnaviruses also have a downside to the parasitoid's progeny by initiating a multitrophic chain of interactions that reveals the parasitoid larvae to their enemies. These enemies are hyperparasitoids that use the parasitoid progeny as host for their own offspring. We found that the virus and venom injected by the parasitoid during oviposition, but not the parasitoid progeny itself, affected hyperparasitoid attraction toward plant volatiles induced by feeding of parasitized caterpillars. We identified activity of virus-related genes in the caterpillar salivary gland. Moreover, the virus affected the activity of elicitors of salivary origin that induce plant responses to caterpillar feeding. The changes in caterpillar saliva were critical in inducing plant volatiles that are used by hyperparasitoids to locate parasitized caterpillars. Our results show that symbiotic organisms may be key drivers of multitrophic ecological interactions. We anticipate that this phenomenon is widespread in nature, because of the abundance of symbiotic microorganisms across trophic levels in ecological communities. Their role should be more prominently integrated in community ecology to understand organization of natural and managed ecosystems, as well as adaptations of individual organisms that are part of these communities.
Asunto(s)
Mariposas Diurnas/parasitología , Interacciones Huésped-Parásitos , Larva/parasitología , Plantas/metabolismo , Polydnaviridae/fisiología , Ponzoñas/administración & dosificación , Avispas/parasitología , Animales , Mariposas Diurnas/fisiología , Mariposas Diurnas/virología , Ecosistema , Regulación de la Expresión Génica de las Plantas , Larva/fisiología , Larva/virología , Plantas/parasitología , Plantas/virología , Simbiosis , Avispas/fisiología , Avispas/virologíaRESUMEN
Parasitoids depend on other insects for the development of their offspring. Their eggs are laid in or on a host insect that is consumed during juvenile development. Parasitoids harbor a diversity of microbial symbionts including viruses, bacteria, and fungi. In contrast to symbionts of herbivorous and hematophagous insects, parasitoid symbionts do not provide nutrients. Instead, they are involved in parasitoid reproduction, suppression of host immune responses, and manipulation of the behavior of herbivorous hosts. Moreover, recent research has shown that parasitoid symbionts such as polydnaviruses may also influence plant-mediated interactions among members of plant-associated communities at different trophic levels, such as herbivores, parasitoids, and hyperparasitoids. This implies that these symbionts have a much more extended phenotype than previously thought. This review focuses on the effects of parasitoid symbionts on direct and indirect species interactions and the consequences for community ecology.
Asunto(s)
Insectos/microbiología , Animales , Cadena Alimentaria , Interacciones Huésped-Parásitos , Insectos/parasitología , Microbiota , Fenotipo , SimbiosisRESUMEN
A plant's offspring may escape unfavourable local conditions through seed dispersal. Whether plants use this strategy to escape insect herbivores is not well understood. Here, we explore how different dandelion (Taraxacum officinale agg.) populations, including diploid outcrossers and triploid apomicts, modify seed dispersal in response to root herbivore attack by their main root-feeding natural enemy, the larvae of the common cockchafer Melolontha melolontha. In a manipulative field experiment, root herbivore attack increased seed dispersal potential through a reduction in seed weight in populations that evolved under high root herbivore pressure, but not in populations that evolved under low pressure. This increase in dispersal potential was independent of plant cytotype, but associated with a reduction in germination rate, suggesting that adapted dandelions trade dispersal for establishment upon attack by root herbivores. Analysis of vegetative growth parameters suggested that the increased dispersal capacity was not the result of stress flowering. In summary, these results suggest that root herbivory selects for an induced increase in dispersal ability in response to herbivore attack. Induced seed dispersal may be a strategy that allows adapted plants to escape from herbivores.
Asunto(s)
Escarabajos/fisiología , Germinación , Herbivoria , Taraxacum/fisiología , AnimalesRESUMEN
A vast body of research demonstrates that many ecological and evolutionary processes can only be understood from a tri-trophic viewpoint, that is, one that moves beyond the pairwise interactions of neighbouring trophic levels to consider the emergent features of interactions among multiple trophic levels. Despite its unifying potential, tri-trophic research has been fragmented, following two distinct paths. One has focused on the population biology and evolutionary ecology of simple food chains of interacting species. The other has focused on bottom-up and top-down controls over the distribution of biomass across trophic levels and other ecosystem-level variables. Here, we propose pathways to bridge these two long-standing perspectives. We argue that an expanded theory of tri-trophic interactions (TTIs) can unify our understanding of biological processes across scales and levels of organisation, ranging from species evolution and pairwise interactions to community structure and ecosystem function. To do so requires addressing how community structure and ecosystem function arise as emergent properties of component TTIs, and, in turn, how species traits and TTIs are shaped by the ecosystem processes and the abiotic environment in which they are embedded. We conclude that novel insights will come from applying tri-trophic theory systematically across all levels of biological organisation.
Asunto(s)
Ecosistema , Cadena Alimentaria , Biomasa , EcologíaRESUMEN
Plant phenotypic plasticity in response to antagonists can affect other community members such as mutualists, conferring potential ecological costs associated with inducible plant defence. For flowering plants, induction of defences to deal with herbivores can lead to disruption of plant-pollinator interactions. Current knowledge on the full extent of herbivore-induced changes in flower traits is limited, and we know little about specificity of induction of flower traits and specificity of effect on flower visitors. We exposed flowering Brassica nigra plants to six insect herbivore species and recorded changes in flower traits (flower abundance, morphology, colour, volatile emission, nectar quantity, and pollen quantity and size) and the behaviour of two pollinating insects. Our results show that herbivory can affect multiple flower traits and pollinator behaviour. Most plastic floral traits were flower morphology, colour, the composition of the volatile blend, and nectar production. Herbivore-induced changes in flower traits resulted in positive, negative, or neutral effects on pollinator behaviour. Effects on flower traits and pollinator behaviour were herbivore species-specific. Flowers show extensive plasticity in response to antagonist herbivores, with contrasting effects on mutualist pollinators. Antagonists can potentially act as agents of selection on flower traits and plant reproduction via plant-mediated interactions with mutualists.
Asunto(s)
Adaptación Fisiológica/fisiología , Flores/fisiología , Herbivoria , Insectos/fisiología , Magnoliopsida/fisiología , Polinización/fisiología , Animales , Flores/anatomía & histología , Planta de la Mostaza/fisiología , Aceites Volátiles/metabolismo , Fenotipo , Polen , Especificidad de la Especie , SimbiosisRESUMEN
Plants balance the allocation of resources between growth and defence to optimize fitness in a competitive environment. Perception of neighbour-detection cues, such as a low ratio of red to far-red (R:FR) radiation, activates a suite of shade-avoidance responses that include stem elongation and upward leaf movement, whilst simultaneously downregulating defence. This downregulation is hypothesized to benefit the plant either by mediating the growth-defence balance in favour of growth in high plant densities or, alternatively, by mediating defence of individual leaves such that those most photosynthetically productive are best protected. To test these hypotheses, we used a 3D functional-structural plant model of Brassica nigra that mechanistically simulates the interactions between plant architecture, herbivory, and the light environment. Our results show that plant-level defence expression is a strong determinant of plant fitness and that leaf-level defence mediation by R:FR can provide a fitness benefit in high densities. However, optimal plant-level defence expression does not decrease monotonically with plant density, indicating that R:FR mediation of defence alone is not enough to optimize defence between densities. Therefore, assessing the ecological significance of R:FR-mediated defence is paramount to better understand the evolution of this physiological linkage and its implications for crop breeding.
Asunto(s)
Luz , Planta de la Mostaza/fisiología , Fenómenos Fisiológicos de las Plantas/efectos de la radiación , Simulación por Computador , Ecología , Herbivoria , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiaciónRESUMEN
INTRODUCTION: The oxylipin methyl jasmonate (MeJA) is a plant hormone active in response signalling and defence against herbivores. Although MeJA is applied experimentally to mimic herbivory and induce plant defences, its downstream effects on the plant metabolome are largely uncharacterized, especially in the context of primary growth and tissue-specificity of the response. OBJECTIVES: We investigated the effects of MeJA-simulated and real caterpillar herbivory on the foliar metabolome of the wild plant Brassica nigra and monitored the herbivore-induced responses in relation to leaf ontogeny. METHODS: As single or multiple herbivory treatments, MeJA- and mock-sprayed plants were consecutively exposed to caterpillars or left untreated. Gas chromatography (GC) and liquid chromatography (LC) time-of-flight mass-spectrometry (TOF-MS) were combined to analyse foliar compounds, including central primary and specialized defensive plant metabolites. RESULTS: Plant responses were stronger in young leaves, which simultaneously induced higher chlorophyll levels. Both MeJA and caterpillar herbivory induced similar, but not identical, accumulation of tricarboxylic acids (TCAs), glucosinolates (GSLs) and phenylpropanoids (PPs), but only caterpillar feeding led to depletion of amino acids. MeJA followed by caterpillars caused higher induction of defence compounds, including a three-fold increase in the major defence compound allyl-GSL (sinigrin). When feeding on MeJA-treated plants, caterpillars gained less weight indicative of the reduced host-plant quality and enhanced resistance. CONCLUSIONS: The metabolomics approach showed that plant responses induced by herbivory extend beyond the regulation of defence metabolism and are tightly modulated throughout leaf development. This leads to a new understanding of the plant metabolic potential that can be exploited for future plant protection strategies.
Asunto(s)
Metabolómica , Planta de la Mostaza/metabolismo , Hojas de la Planta/metabolismo , Acetatos/farmacología , Cromatografía Liquida , Ciclopentanos/farmacología , Cromatografía de Gases y Espectrometría de Masas , Planta de la Mostaza/efectos de los fármacos , Oxilipinas/farmacología , Hojas de la Planta/efectos de los fármacosRESUMEN
Although consumers often rely on chemical information to optimize their foraging strategies, it is poorly understood how top carnivores above the third trophic level find resources in heterogeneous environments. Hyperparasitoids are a common group of organisms in the fourth trophic level that lay their eggs in or on the body of other parasitoid hosts. Such top carnivores use herbivore-induced plant volatiles (HIPVs) to find caterpillars containing parasitoid host larvae. Hyperparasitoids forage in complex environments where hosts of different quality may be present alongside non-host parasitoid species, each of which can develop in multiple herbivore species. Because both the identity of the herbivore species and its parasitization status can affect the composition of HIPV emission, hyperparasitoids encounter considerable variation in HIPVs during host location. Here, we combined laboratory and field experiments to investigate the role of HIPVs in host selection of hyperparasitoids that search for hosts in a multi-parasitoid multi-herbivore context. In a wild Brassica oleracea-based food web, the hyperparasitoid Lysibia nana preferred HIPVs emitted in response to caterpillars parasitized by the gregarious host Cotesia glomerata over the non-host Hyposoter ebeninus. However, no plant-mediated discrimination occurred between the solitary host C. rubecula and the non-host H. ebeninus. Under both laboratory and field conditions, hyperparasitoid responses were not affected by the herbivore species (Pieris brassicae or P. rapae) in which the three primary parasitoid species developed. Our study shows that HIPVs are an important source of information within multitrophic interaction networks allowing hyperparasitoids to find their preferred hosts in heterogeneous environments.
Asunto(s)
Mariposas Diurnas , Avispas , Animales , Cadena Alimentaria , Herbivoria , Interacciones Huésped-Parásitos , LarvaRESUMEN
Foraging animals face the difficult task to find resources in complex environments that contain conflicting information. The presence of a non-suitable resource that provides attractive cues can be expected to confuse foraging animals and to reduce their foraging efficiency. We used the parasitoid Cotesia glomerata to study the effect of non-host-infested plants and associative learning on parasitoid foraging efficiency. Inexperienced C. glomerata did not prefer volatiles emitted from host (Pieris brassicae)-infested plants over volatiles from non-host (Mamestra brassicae)-infested plants and parasitoids that had to pass non-host-infested plants needed eight times longer to reach the host-infested plant compared to parasitoids that had to pass undamaged plants. Contrary to our expectations, oviposition experience on a host-infested leaf decreased foraging efficiency due to more frequent visits of non-host-infested plants. Oviposition experience did not only increase the responsiveness of C. glomerata to the host-infested plants, but also the attraction towards herbivore-induced plant volatiles in general. Experience with non-host-infested leaves on the contrary resulted in a reduced attraction towards non-host-infested plants, but did not increase foraging efficiency. Our study shows that HIPVs emitted by non-host-infested plants can confuse foraging parasitoids and reduce their foraging efficiency when non-host-infested plants are abundant. Our results further suggest that the effect of experience on foraging efficiency in the presence of non-host-infested plants depends on the similarity between the rewarding and the non-rewarding cue as well as on the completeness of information that parasitoids have acquired about the rewarding and non-rewarding cues.
Asunto(s)
Mariposas Diurnas , Compuestos Orgánicos Volátiles , Avispas , Animales , Femenino , Herbivoria , Interacciones Huésped-Parásitos , LarvaRESUMEN
Herbivore attack can alter plant interactions with pollinators, ranging from reduced to enhanced pollinator visitation. The direction and strength of effects of herbivory on pollinator visitation could be contingent on the type of plant tissue or organ attacked by herbivores, but this has seldom been tested experimentally. We investigated the effect of variation in feeding site of herbivorous insects on the visitation by insect pollinators on flowering Brassica nigra plants. We placed herbivores on either leaves or flowers, and recorded the responses of two pollinator species when visiting flowers. Our results show that variation in herbivore feeding site has profound impact on the outcome of herbivore-pollinator interactions. Herbivores feeding on flowers had consistent positive effects on pollinator visitation, whereas herbivores feeding on leaves did not. Herbivores themselves preferred to feed on flowers, and mostly performed best on flowers. We conclude that herbivore feeding site choice can profoundly affect herbivore-pollinator interactions and feeding site thereby makes for an important herbivore trait that can determine the linkage between antagonistic and mutualistic networks.