Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(32): e2203760119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35867811

RESUMEN

The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis, and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and five major variants of concern that include the B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.617.2 (delta), and B.1.1.529 (omicron) lineages. Our data reveal that relative to ancestral isolates, SARS-CoV-2 variants of concern exhibited increased interferon resistance, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased transmissibility and/or lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.


Asunto(s)
Antivirales , COVID-19 , Interferones , SARS-CoV-2 , Anticuerpos Neutralizantes , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/transmisión , Humanos , Interferones/farmacología , Interferones/uso terapéutico , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
2.
Genes Dev ; 29(21): 2287-97, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26545813

RESUMEN

The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced.


Asunto(s)
VIH-1/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Integración Viral/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Intrones/genética , Unión Proteica , Estructura Terciaria de Proteína , Empalme del ARN
3.
J Immunol ; 204(10): 2791-2807, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32277054

RESUMEN

Pathogen-associated molecular patterns (e.g., dsRNA) activate expression of IFN-stimulated genes (ISGs), which protect hosts from infection. Although transient ISG upregulation is essential for effective innate immunity, constitutive activation typically causes harmful autoimmunity in mice and humans, often including severe developmental abnormalities. We have shown that transgenic mice expressing a picornavirus RNA-dependent RNA polymerase (RdRP) outside the viral context (RdRP mice) exhibit constitutive, MDA5-dependent, and quantitatively dramatic upregulation of many ISGs, which confers broad viral infection resistance. Remarkably, RdRP mice never develop autoinflammation, interferonopathy, or other discernible abnormalities. In this study, we used RNA sequencing and other methods to analyze ISG expression across five time points from fetal development to adulthood in wild-type and RdRP mice. In RdRP mice, the proportion of upregulated ISGs increased during development, with the most dramatic induction occurring 2 wk postnatally. The amplified ISG profile is then maintained lifelong. Molecular pathways and biological functions associated with innate immune and IFN signaling are only activated postnatally, suggesting constrained fetal responsiveness to innate immune stimuli. Biological functions supporting replication of viruses are only inhibited postnatally. We further determined that the RdRP is expressed at low levels and that blocking Ifnar1 reverses the amplified ISG transcriptome in adults. In conclusion, the upregulated ISG profile of RdRP mice is mostly triggered early postnatally, is maintained through adulthood, and requires ongoing type I IFN signaling to maintain it. The model provides opportunities to study the systems biology of innate immunity and to determine how sustained ISG upregulation can be compatible with robust health.


Asunto(s)
Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones/metabolismo , Picornaviridae/fisiología , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Proteinas del Complejo de Replicasa Viral/genética , Animales , Resistencia a la Enfermedad/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , ARN Polimerasa Dependiente del ARN/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal , Proteinas del Complejo de Replicasa Viral/metabolismo
4.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32051266

RESUMEN

The innate immune system is normally programmed for immediate but transient upregulation in response to invading pathogens, and interferon (IFN)-stimulated gene (ISG) activation is a central feature. In contrast, chronic innate immune system activation is typically associated with autoimmunity and a broad array of autoinflammatory diseases that include the interferonopathies. Here, we studied retroviral susceptibility in a transgenic mouse model with lifelong innate immune system hyperactivation. The mice transgenically express low levels of a picornaviral RNA-dependent RNA polymerase (RdRP), which synthesizes double-stranded RNAs that are sensed by melanoma differentiation-associated protein 5 (MDA5) to trigger constitutive upregulation of many ISGs. However, in striking counterpoint to the paradigm established by numerous human and murine examples of ISG hyperactivation, including constitutive MDA5 activation, they lack autoinflammatory sequelae. RdRP-transgenic mice (RdRP mice) resist infection and disease caused by several pathogenic RNA and DNA viruses. However, retroviruses are sensed through other mechanisms, persist in the host, and have distinctive replication and immunity-evading properties. We infected RdRP mice and wild-type (WT) mice with various doses of a pathogenic retrovirus (Friend virus) and assessed immune parameters and disease at 1, 4, and 8 weeks. Compared to WT mice, RdRP mice had significantly reduced splenomegaly, viral loads, and infection of multiple target cell types in the spleen and the bone marrow. During chronic infection, RdRP mice had 2.35 ± 0.66 log10 lower circulating viral RNA than WT. Protection required ongoing type I IFN signaling. The results show that the reconfigured RdRP mouse innate immune system substantially reduced retroviral replication, set point, and pathogenesis.IMPORTANCE Immune control of retroviruses is notoriously difficult, a fundamental problem that has been most clinically consequential with the HIV-1 pandemic. As humans expand further into previously uninhabited areas, the likelihood of new zoonotic retroviral exposures increases. The role of the innate immune system, including ISGs, in controlling retroviral infections is currently an area of intensive study. This work provides evidence that a primed innate immune system is an effective defense against retroviral pathogenesis, resulting in reduced viral replication and burden of disease outcomes. RdRP mice also had considerably lower Friend retrovirus (FV) viremia. The results could have implications for harnessing ISG responses to reduce transmission or control pathogenesis of human retroviral pathogens.


Asunto(s)
Helicasa Inducida por Interferón IFIH1/metabolismo , Picornaviridae/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Animales , Femenino , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Inmunidad Innata , Interferón Tipo I/biosíntesis , Helicasa Inducida por Interferón IFIH1/genética , Interferón beta/metabolismo , Masculino , Ratones , Ratones Transgénicos , Picornaviridae/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Infecciones por Retroviridae/virología , Carga Viral , Viremia , Replicación Viral
5.
Emerg Infect Dis ; 26(2): 383-385, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31961310

RESUMEN

In North America, hantaviruses commonly cause hantavirus pulmonary syndrome (HPS). Clinical descriptions of hantavirus-associated renal disease in the Americas are scarce. Herein, we discuss the case of a 61-year-old man whose predominant manifestations were acute kidney injury and proteinuria. Clinical recognition of renal signs in hantavirus infections can reduce risk for death.


Asunto(s)
Síndrome Pulmonar por Hantavirus/diagnóstico , Orthohantavirus/aislamiento & purificación , Insuficiencia Renal/diagnóstico , Colorado , Diagnóstico Diferencial , Síndrome Pulmonar por Hantavirus/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Proteinuria/etiología , Insuficiencia Renal/complicaciones
6.
Proc Natl Acad Sci U S A ; 113(8): E1054-63, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26858452

RESUMEN

Integration is vital to retroviral replication and influences the establishment of the latent HIV reservoir. HIV-1 integration favors active genes, which is in part determined by the interaction between integrase and lens epithelium-derived growth factor (LEDGF)/p75. Because gene targeting remains significantly enriched, relative to random in LEDGF/p75 deficient cells, other host factors likely contribute to gene-tropic integration. Nucleoporins 153 and 358, which bind HIV-1 capsid, play comparatively minor roles in integration targeting, but the influence of another capsid binding protein, cleavage and polyadenylation specificity factor 6 (CPSF6), has not been reported. In this study we knocked down or knocked out CPSF6 in parallel or in tandem with LEDGF/p75. CPSF6 knockout changed viral infectivity kinetics, decreased proviral formation, and preferentially decreased integration into transcriptionally active genes, spliced genes, and regions of chromatin enriched in genes and activating histone modifications. LEDGF/p75 depletion by contrast preferentially altered positional integration targeting within gene bodies. Dual factor knockout reduced integration into genes to below the levels observed with either single knockout and revealed that CPSF6 played a more dominant role than LEDGF/p75 in directing integration to euchromatin. CPSF6 complementation rescued HIV-1 integration site distribution in CPSF6 knockout cells, but complementation with a capsid binding mutant of CPSF6 did not. We conclude that integration targeting proceeds via two distinct mechanisms: capsid-CPSF6 binding directs HIV-1 to actively transcribed euchromatin, where the integrase-LEDGF/p75 interaction drives integration into gene bodies.


Asunto(s)
Cápside/metabolismo , Cromatina/metabolismo , VIH-1/fisiología , Integración Viral/fisiología , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cromatina/genética , Cromatina/virología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/genética
7.
PLoS Pathog ; 11(12): e1005311, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26633895

RESUMEN

For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.


Asunto(s)
Genes Virales/inmunología , Inmunidad Innata/inmunología , ARN Polimerasa Dependiente del ARN/inmunología , Proteínas Virales/inmunología , Animales , Western Blotting , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunidad Innata/genética , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Picornaviridae/genética , Picornaviridae/inmunología , ARN Polimerasa Dependiente del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virosis/inmunología , Virosis/prevención & control
8.
PLoS Pathog ; 10(2): e1003969, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586169

RESUMEN

The large nucleoporin Nup358/RanBP2 forms eight filaments that project from the nuclear pore into the cytoplasm where they function as docking platforms for nucleocytoplasmic transport receptors. RNAi screens have implicated Nup358 in the HIV-1 life cycle. The 164 C-terminal amino acids of this 3,224 amino acid protein are a cyclophilin homology domain (Nup358Cyp), which has potential to bind the HIV-1 capsid and regulate viral progress to integration. Here we examined the virological role of Nup358 in conditional knockout mouse cells and in RNAi-depleted human CD4⁺ T cells. Cre-mediated gene knockout was toxic and diminished HIV-1 infectivity. However, cellular health and HIV-1 susceptibility were coordinately preserved if, prior to gene inactivation, a transposon was used to express all of Nup358 or only the N-terminal 1340 amino acids that contain three FG repeats and a Ran-binding domain. HIV-1, but not N74D capsid-mutant HIV-1, was markedly sensitive to TNPO3 depletion, but they infected 1-1340 segment-complemented Nup358 knockout cells equivalently. Human and mouse CypA both rescued HIV-1 in CypA gene⁻/⁻ Jurkat cells and TRIM-Nup358Cyp fusions derived from each species were equally antiviral; each also inhibited both WT and N74D virus. In the human CD4⁺T cell line SupT1, abrupt Nup358 depletion reduced viral replication but stable Nup358-depleted cells replicated HIV-1 normally. Thus, human CD4⁺ T cells can accommodate to loss of Nup358 and preserve HIV-1 susceptibility. Experiments with cylosporine, viruses with capsids that do not bind cyclophilins, and growth arrest did not uncover viral dependency on the C-terminal domains of Nup358. Our data reinforce the virological importance of TNPO3 and show that Nup358 supports nuclear transport functions important for cellular homeostasis and for HIV-1 nuclear import. However, the results do not suggest direct roles for the Nup358 cyclophilin or SUMO E3 ligase domains in engaging the HIV-1 capsid prior to nuclear translocation.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Linfocitos T CD4-Positivos/metabolismo , Ciclofilinas/metabolismo , Humanos , Immunoblotting , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Interferencia de ARN
9.
J Virol ; 88(6): 3255-72, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24390322

RESUMEN

UNLABELLED: BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. IMPORTANCE: HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is also its Env protein, but the mechanism is distinctive. Unlike other tetherin antagonists, FIV Env cannot act in trans to rescue vpu-deficient HIV-1. It must be incorporated specifically into FIV virions to be active. Also unlike other retroviral antagonists, but similar to Ebola virus Env, it does not act by downregulating or degrading tetherin. FIV Env might exclude tetherin locally or direct assembly to tetherin-negative membrane domains. Other distinctive features are apparent, including evidence that this virus evolved an equilibrium in which tetherin is both restriction factor and cofactor, as FIV requires tetherin for optimal particle release.


Asunto(s)
Antígenos CD/metabolismo , Enfermedades de los Gatos/metabolismo , Virus de la Inmunodeficiencia Felina/metabolismo , Infecciones por Lentivirus/veterinaria , Proteínas del Envoltorio Viral/metabolismo , Virión/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos CD/química , Antígenos CD/genética , Enfermedades de los Gatos/genética , Enfermedades de los Gatos/virología , Gatos , Perros , Virus de la Inmunodeficiencia Felina/química , Virus de la Inmunodeficiencia Felina/genética , Infecciones por Lentivirus/genética , Infecciones por Lentivirus/metabolismo , Infecciones por Lentivirus/virología , Datos de Secuencia Molecular , Alineación de Secuencia , Proteínas del Envoltorio Viral/genética , Virión/genética
10.
J Virol ; 88(17): 9704-17, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24942577

RESUMEN

UNLABELLED: HIV-1 utilizes the cellular protein LEDGF/p75 as a chromosome docking and integration cofactor. The LEDGF/p75 gene, PSIP1, is a potential therapeutic target because, like CCR5, depletion of LEDGF/p75 is tolerated well by human CD4+ T cells, and knockout mice have normal immune systems. RNA interference (RNAi) has been useful for studying LEDGF/p75, but the potent cofactor activity of small protein residua can be confounding. Here, in human cells with utility for HIV research (293T and Jurkat), we used transcription activator-like effector nucleases (TALENs) to completely eradicate all LEDGF/p75 expression. We performed two kinds of PSIP1 knockouts: whole-gene deletion and deletion of the integrase binding domain (IBD)-encoding exons. HIV-1 integration was inhibited, and spreading viral replication was severely impaired in PSIP1-/- Jurkat cells infected at high multiplicity. Furthermore, frameshifting the gene in the first coding exon with a single TALEN pair yielded trace LEDGF/p75 levels that were virologically active, affirming the cofactor's potency and the value of definitive gene or IBD exon segment deletion. Some recent studies have suggested that LEDGF/p75 may participate in HIV-1 assembly. However, we determined that assembly of infectious viral particles is normal in PSIP1-/- cells. The potency of an allosteric integrase inhibitor, ALLINI-2, for rendering produced virions noninfectious was also unaffected by total eradication of cellular LEDGF/p75. We conclude that HIV-1 particle assembly and the main ALLINI mechanism are LEDGF/p75 independent. The block to HIV-1 propagation in PSIP1-/- human CD4+ T cells raises the possibility of gene targeting PSIP1 combinatorially with CCR5 for HIV-1 cure. IMPORTANCE: LEDGF/p75 dependence is universally conserved in the retroviral genus Lentivirus. Once inside the nucleus, lentiviral preintegration complexes are thought to attach to the chromosome when integrase binds to LEDGF/p75. This tethering process is largely responsible for the 2-fold preference for integration into active genes, but the cofactor's full role in the lentiviral life cycle is not yet clear. Effective knockdowns are difficult because even trace residua of this tightly chromatin-bound protein can support integration cofactor function. Here, in experimentally useful human cell lines, we used TALENs to definitively eradicate LEDGF/p75 by deleting either all of PSIP1 or the exons that code for the integrase binding domain. HIV-1 replication was severely impaired in these PSIP1 knockout cells. Experiments in these cells also excluded a role for LEDGF/p75 in HIV-1 assembly and showed that the main ALLINI mechanism is LEDGF/p75 independent. Site-specific gene targeting of PSIP1 may have therapeutic potential for HIV-1 disease.


Asunto(s)
Técnicas de Inactivación de Genes , Integrasa de VIH/metabolismo , VIH-1/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Integración Viral , Replicación Viral , Línea Celular , Humanos , Proteínas del Tejido Nervioso/deficiencia , Ensamble de Virus
11.
Mol Carcinog ; 53(4): 300-13, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23138933

RESUMEN

Genetic variation and candidate genes associated with breast cancer susceptibility have been identified. Identifying molecular interactions between associated genetic variation and cellular proteins may help to better understand environmental risk. Human MCS5A1 breast cancer susceptibility associated SNP rs7042509 is located in F-box protein 10 (FBXO10). An orthologous Rattus norvegicus DNA-sequence that contains SNV ss262858675 is located in rat Mcs5a1, which is part of a mammary carcinoma susceptibility locus controlling tumor development in a non-mammary cell-autonomous manner via an immune cell-mediated mechanism. Higher Fbxo10 expression in T cells is associated with Mcs5a increased susceptibility alleles. A common DNA-protein complex bound human and rat sequences containing MCS5A1/Mcs5a1 rs7042509/ss262858675 in electrophoretic mobility shift assays (EMSAs). Lens epithelium-derived growth factor (LEDGF), a stress-response protein, was identified as a candidate to bind both human and rat sequences using DNA-pulldown and mass spectrometry. LEDGF binding was confirmed by LEDGF-antibody EMSA and chromatin immunoprecipitation (ChIP). Ectopic expression of LEDGF/p75 increased luciferase activities of co-transfected reporters containing both human and rat orthologs. Over-expressed LEDGF/p75 increased endogenous FBXO10 mRNA levels in Jurkat cells, a human T-cell line, implying LEDGF may be involved in increasing FBXO10 transcript levels. Oxidative and thermal stress of Jurkat cells increased FBXO10 and LEDGF expression, further supporting a hypothesis that LEDGF binds to a regulatory region of FBXO10 and increases expression during conditions favoring carcinogenesis. We conclude that FBXO10, a candidate breast cancer susceptibility associated gene, is induced by cellular stress and LEDGF may play a role in expression of this gene.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas F-Box/metabolismo , Predisposición Genética a la Enfermedad , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Estrés Oxidativo , Animales , Secuencia de Bases , Neoplasias de la Mama/patología , Cartilla de ADN , Femenino , Humanos , Células Jurkat , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Ácido Nucleico
12.
J Virol ; 86(4): 2312-22, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22171279

RESUMEN

A rodent or other small animal model for HIV-1 has not been forthcoming, with the principal obstacles being species-specific restriction mechanisms and deficits in HIV-1 dependency factors. Some Carnivorans may harbor comparatively fewer impediments. For example, in contrast to mice, the domestic cat genome encodes essential nonreceptor HIV-1 dependency factors. All Feliformia species and at least one Caniformia species also lack a major lentiviral restriction mechanism (TRIM5α/TRIMCyp proteins). Here we investigated cells from two species in another carnivore family, the Mustelidae, for permissiveness to the HIV-1 life cycle. Mustela putorius furo (domesticated ferret) primary cells and cell lines did not restrict HIV-1, feline immunodeficiency virus (FIV), equine infectious anemia virus (EIAV), or N-tropic murine leukemia virus (MLV) postentry and supported late HIV-1 life cycle steps comparably to human cells. The ferret TRIM5α gene exon 8, which encodes the B30.2 domain, was found to be pseudogenized. Strikingly, ferret (but not mink) cells engineered to express human HIV-1 entry receptors supported productive spreading replication, amplification, and serial passage of wild-type HIV-1. Nevertheless, produced virions had relatively reduced infectivity and the virus accrued G→A hypermutations, consistent with APOBEC3 protein pressure. Ferret cell-passaged HIV-1 also evolved amino acid changes in the capsid cyclophilin A binding loop. We conclude that the genome of this carnivore can provide essential nonreceptor HIV-1 dependency factors and that ferret APOBEC3 proteins with activity against HIV-1 are likely. Even so, unlike in cat cells, HIV-1 can replicate in ferret cells without vif substitution. The virus evolves in this novel nonprimate cell adaptive landscape. We suggest that further characterization of HIV-1 adaptation in ferret cells and delineation of Mustelidae restriction factor repertoires are warranted, with a view to the potential for an HIV-1 animal model.


Asunto(s)
Evolución Biológica , Modelos Animales de Enfermedad , Hurones , Infecciones por VIH/virología , VIH-1/fisiología , Animales , Línea Celular , VIH-1/genética , Humanos , Visón , Datos de Secuencia Molecular , Cultivo de Virus , Replicación Viral
13.
mBio ; 14(2): e0016123, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36927083

RESUMEN

Signal peptides are N-terminal peptides, generally less than 30 amino acids in length, that direct translocation of proteins into the endoplasmic reticulum and secretory pathway. The envelope glycoprotein (Env) of the nonprimate lentivirus feline immunodeficiency virus (FIV) contains the longest signal peptide of all eukaryotic, prokaryotic, and viral proteins (175 amino acids), yet the reason is unknown. Tetherin is a dual membrane-anchored host protein that inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved three antagonists: the small accessory proteins Vpu and Nef, and in the case of HIV-2, Env. Here, we identify the FIV Env signal peptide (Fsp) as the FIV tetherin antagonist. A short deletion in the central portion of Fsp had no effect on viral replication in the absence of tetherin, but severely impaired virion budding in its presence. Fsp is necessary and sufficient, acting as an autonomous accessory protein with the rest of Env dispensable. In contrast to primate lentivirus tetherin antagonists, its mechanism is to stringently block the incorporation of this restriction factor into viral particles rather than by degrading it or downregulating it from the plasma membrane. IMPORTANCE The study of species- and virus-specific differences in restriction factors and their antagonists has been central to deciphering the nature of these key host defenses. FIV is an AIDS-causing lentivirus that has achieved pandemic spread in the domestic cat. We now identify its tetherin antagonist as the signal sequence of the Envelope glycoprotein, thus identifying the fourth lentiviral anti-tetherin protein and the first new lentiviral accessory protein in decades. Fsp is necessary and sufficient and functions by stringently blocking particle incorporation of tetherin, which differs from the degradation or surface downregulation mechanisms used by primate lentiviruses. Fsp also is a novel example of signal peptide dual function, being both a restriction factor antagonist and a mediator of protein translocation into the endoplasmic reticulum.


Asunto(s)
Virus de la Inmunodeficiencia Felina , Lentivirus de los Primates , Animales , Gatos , Virus de la Inmunodeficiencia Felina/genética , Virus de la Inmunodeficiencia Felina/metabolismo , Antígeno 2 del Estroma de la Médula Ósea/genética , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Aminoácidos , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética
14.
mBio ; : e0171223, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37943059

RESUMEN

The COVID-19 pandemic demonstrated the poor ability of body temperature to reliably identify SARS-CoV-2-infected individuals, an observation that has been made before in the context of other infectious diseases. While acute infection does not always cause fever, it does reliably drive host transcriptional responses as the body responds at the site of infection. These transcriptional changes can occur both in cells that are directly harboring replicating pathogens and in cells elsewhere that receive a molecular signal that infection is occurring. Here, we identify a core set of approximately 70 human genes that are together upregulated in cultured human cells infected by a broad array of viral, bacterial, and fungal pathogens. We have named these "core response" genes. In theory, transcripts from these genes could serve as biomarkers of infection in the human body, in a way that is agnostic to the specific pathogen causing infection. As such, we perform human studies to show that these infection-induced human transcripts can be measured in the saliva of people harboring different types of infections. The number of these transcripts in saliva can correctly classify infection status (whether a person harbors an infection) 91% of the time. Furthermore, in the case of SARS-CoV-2 specifically, the number of core response transcripts in saliva correctly identifies infectious individuals even when enrollees, themselves, are asymptomatic and do not know they are infected.IMPORTANCEThere are a variety of clinical and laboratory criteria available to clinicians in controlled healthcare settings to help them identify whether an infectious disease is present. However, in situations such as a new epidemic caused by an unknown infectious agent, in health screening contexts performed within communities and outside of healthcare facilities or in battlefield or potential biowarfare situations, this gets more difficult. Pathogen-agnostic methods for rapid screening and triage of large numbers of people for infection status are needed, in particular methods that might work on an easily accessible biospecimen like saliva. Here, we identify a small, core set of approximately 70 human genes whose transcripts serve as saliva-based biomarkers of infection in the human body, in a way that is agnostic to the specific pathogen causing infection.

15.
J Virol ; 85(7): 3570-83, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21270171

RESUMEN

Target cell overexpression of the integrase binding domain (IBD) of LEDGF/p75 (LEDGF) inhibits HIV-1 replication. The mechanism and protein structure requirements for this dominant interference are unclear. More generally, how and when HIV-1 uncoating occurs postentry is poorly defined, and it is unknown whether integrase within the evolving viral core becomes accessible to cellular proteins prior to nuclear entry. We used LEDGF dominant interference to address the latter question while characterizing determinants of IBD antiviral activity. Fusions of green fluorescent protein (GFP) with multiple C-terminal segments of LEDGF inhibited HIV-1 replication substantially, but minimal chimeras of either polarity (GFP-IBD or IBD-GFP) were most effective. Combining GFP-IBD expression with LEDGF depletion was profoundly antiviral. CD4(+) T cell lines were rendered virtually uninfectable, with single-cycle HIV-1 infectivity reduced 4 logs and high-input (multiplicity of infection = 5.0) replication completely blocked. We restricted GFP-IBD to specific intracellular locations and found that antiviral activity was preserved when the protein was confined to the cytoplasm or directed to the nuclear envelope. The life cycle block triggered by the cytoplasm-restricted protein manifested after nuclear entry, at the level of integration. We conclude that integrase within the viral core becomes accessible to host cell protein interaction in the cytoplasm. LEDGF dominant interference and depletion impair HIV-1 integration at distinct postentry stages. GFP-IBD may trigger premature or improper integrase oligomerization.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Integrasa de VIH/metabolismo , VIH-1/inmunología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Factores de Transcripción/inmunología , Replicación Viral/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
16.
J Virol ; 85(16): 7965-75, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21653671

RESUMEN

Casp8p41, a novel protein generated when HIV-1 protease cleaves caspase 8, independently causes NF-κB activation, proinflammatory cytokine production, and cell death. Here we investigate the mechanism by which Casp8p41 induces cell death. Immunogold staining and electron microscopy demonstrate that Casp8p41 localizes to mitochondria of activated primary CD4 T cells, suggesting mitochondrial involvement. Therefore, we assessed the dependency of Casp8p41-induced death on Bax/Bak and caspase 9. In wild-type (WT) mouse embryonic fibroblast (MEF) cells, Casp8p41 causes rapid mitochondrial depolarization (P < 0.001), yet Casp8p41 expression in Bax/Bak double-knockout (DKO) MEF cells does not. Similarly, caspase 9-deficient T cells (JMR cells), which express Casp8p41, undergo minimal cell death, whereas reconstituting these cells with caspase 9 (F9 cells) restores Casp8p41 cytotoxicity (P < 0.01). The infection of caspase 9-deficient cells with a green fluorescent protein (GFP) HIV-1 reporter virus results in cell death in 32% of infected GFP-positive cells, while the restoration of caspase 9 expression in these cells restores infected-cell killing to 68% (P < 0.05), with similar levels of viral replication between infections. Our data demonstrate that Casp8p41 requires Bax/Bak to induce mitochondrial depolarization, which leads to caspase 9 activation following either Casp8p41 expression or HIV-1 infection. This understanding allows the design of strategies to interrupt this form of death of HIV-1-infected cells.


Asunto(s)
Apoptosis , Linfocitos T CD4-Positivos/virología , Caspasa 8/metabolismo , VIH-1/fisiología , Mitocondrias/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Western Blotting , Linfocitos T CD4-Positivos/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Línea Celular Tumoral , Citometría de Flujo , Expresión Génica , Técnicas de Inactivación de Genes , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Inmunohistoquímica , Células Jurkat , Ratones , Ratones Noqueados , Microscopía Electrónica , Replicación Viral , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
17.
Nano Sel ; 3(2): 437-449, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34541574

RESUMEN

Antiviral strategies that target host systems needed for SARS-CoV-2 replication and pathogenesis may have therapeutic potential and help mitigate resistance development. Here, we evaluate nafamostat mesylate, a potent broad-spectrum serine protease inhibitor that blocks host protease activation of the viral spike protein. SARS-CoV-2 is used to infect human polarized mucociliated primary bronchiolar epithelia reconstituted with cells derived from healthy donors, smokers and subjects with chronic obstructive pulmonary disease. Nafamostat markedly inhibits apical shedding of SARS-CoV-2 from all donors (log10 reduction). We also observe, for the first-time, anti-inflammatory effects of nafamostat on airway epithelia independent of its antiviral effects, suggesting a dual therapeutic advantage in the treatment of COVID-19. Nafamostat also exhibits antiviral properties against the seasonal human coronaviruses 229E and NL6. These findings suggest therapeutic promise for nafamostat in treating SARS-CoV-2 and other human coronaviruses.

18.
Viruses ; 14(9)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36146690

RESUMEN

Allosteric integrase (IN) inhibitors (ALLINIs), which are promising preclinical compounds that engage the lens epithelium-derived growth factor (LEDGF)/p75 binding site on IN, can inhibit different aspects of human immunodeficiency virus 1 (HIV-1) replication. During the late phase of replication, ALLINIs induce aberrant IN hyper-multimerization, the consequences of which disrupt IN binding to genomic RNA and virus particle morphogenesis. During the early phase of infection, ALLINIs can suppress HIV-1 integration into host genes, which is also observed in LEDGF/p75-depelted cells. Despite this similarity, the roles of LEDGF/p75 and its paralog hepatoma-derived growth factor like 2 (HDGFL2) in ALLINI-mediated integration retargeting are untested. Herein, we mapped integration sites in cells knocked out for LEDGF/p75, HDGFL2, or both factors, which revealed that these two proteins in large part account for ALLINI-mediated integration retargeting during the early phase of infection. We also determined that ALLINI-treated viruses are defective during the subsequent round of infection for integration into genes associated with speckle-associated domains, which are naturally highly targeted for HIV-1 integration. Class II IN mutant viruses with alterations distal from the LEDGF/p75 binding site moreover shared this integration retargeting phenotype. Altogether, our findings help to inform the molecular bases and consequences of ALLINI action.


Asunto(s)
Fármacos Anti-VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , VIH-1/genética , VIH-1/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , ARN , Integración Viral , Replicación Viral
19.
Nat Commun ; 13(1): 2416, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504909

RESUMEN

A multimer of retroviral integrase (IN) synapses viral DNA ends within a stable intasome nucleoprotein complex for integration into a host cell genome. Reconstitution of the intasome from the maedi-visna virus (MVV), an ovine lentivirus, revealed a large assembly containing sixteen IN subunits1. Herein, we report cryo-EM structures of the lentiviral intasome prior to engagement of target DNA and following strand transfer, refined at 3.4 and 3.5 Å resolution, respectively. The structures elucidate details of the protein-protein and protein-DNA interfaces involved in lentiviral intasome formation. We show that the homomeric interfaces involved in IN hexadecamer formation and the α-helical configuration of the linker connecting the C-terminal and catalytic core domains are critical for MVV IN strand transfer activity in vitro and for virus infectivity. Single-molecule microscopy in conjunction with photobleaching reveals that the MVV intasome can bind a variable number, up to sixteen molecules, of the lentivirus-specific host factor LEDGF/p75. Concordantly, ablation of endogenous LEDGF/p75 results in gross redistribution of MVV integration sites in human and ovine cells. Our data confirm the importance of the expanded architecture observed in cryo-EM studies of lentiviral intasomes and suggest that this organization underlies multivalent interactions with chromatin for integration targeting to active genes.


Asunto(s)
ADN Viral , Integrasas , Animales , Humanos , Dominio Catalítico , ADN Viral/metabolismo , Integrasas/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Modelos Moleculares , Retroviridae/genética , Ovinos/genética , Integración Viral
20.
Biochim Biophys Acta ; 1799(3-4): 182-91, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19836475

RESUMEN

Permanent integration of the viral genome into a host chromosome is an essential step in the life cycles of lentiviruses and other retroviruses. By archiving the viral genetic information in the genome of the host target cell and its progeny, integrated proviruses prevent curative therapy of HIV-1 and make the development of antiretroviral drug resistance irreversible. Although the integration reaction is known to be catalyzed by the viral integrase (IN), the manner in which retroviruses engage and attach to the chromatin target is only now becoming clear. Lens epithelium-derived growth factor (LEDGF/p75) is a ubiquitously expressed nuclear protein that binds to lentiviral IN protein dimers at its carboxyl terminus and to host chromatin at its amino terminus. LEDGF/p75 thus tethers ectopically expressed IN to chromatin. It also protects IN from proteosomal degradation and can stimulate IN catalysis in vitro. HIV-1 infection is inhibited at the integration step in LEDGF/p75-deficient cells, and the characteristic lentiviral preference for integration into active genes is also reduced. A model in which LEDGF/p75 acts to tether the viral preintegration complex to chromatin has emerged. Intriguingly, similar chromatin tethering mechanisms have been described for other retroelements and for large DNA viruses. Here we review the evidence supporting the LEDGF/p75 tethering model and consider parallels with these other viruses.


Asunto(s)
Cromatina/fisiología , Virus ADN/genética , Péptidos y Proteínas de Señalización Intercelular/fisiología , Retroviridae/genética , Integración Viral , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA