Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730852

RESUMEN

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Asunto(s)
Células/metabolismo , Metabolismo Energético , Adaptación Fisiológica/efectos de la radiación , Adenosina Trifosfato/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Células/efectos de la radiación , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusión , Transporte de Electrón/efectos de la radiación , Metabolismo Energético/efectos de la radiación , Ambiente , Enlace de Hidrógeno , Cinética , Luz , Simulación de Dinámica Molecular , Fenotipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiología , Rhodobacter sphaeroides/efectos de la radiación , Electricidad Estática , Estrés Fisiológico/efectos de la radiación , Temperatura
2.
Nature ; 623(7989): 1079-1085, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938782

RESUMEN

Decades of previous efforts to develop renal-sparing polyene antifungals were misguided by the classic membrane permeabilization model1. Recently, the clinically vital but also highly renal-toxic small-molecule natural product amphotericin B was instead found to kill fungi primarily by forming extramembraneous sponge-like aggregates that extract ergosterol from lipid bilayers2-6. Here we show that rapid and selective extraction of fungal ergosterol can yield potent and renal-sparing polyene antifungals. Cholesterol extraction was found to drive the toxicity of amphotericin B to human renal cells. Our examination of high-resolution structures of amphotericin B sponges in sterol-free and sterol-bound states guided us to a promising structural derivative that does not bind cholesterol and is thus renal sparing. This derivative was also less potent because it extracts ergosterol more slowly. Selective acceleration of ergosterol extraction with a second structural modification yielded a new polyene, AM-2-19, that is renal sparing in mice and primary human renal cells, potent against hundreds of pathogenic fungal strains, resistance evasive following serial passage in vitro and highly efficacious in animal models of invasive fungal infections. Thus, rational tuning of the dynamics of interactions between small molecules may lead to better treatments for fungal infections that still kill millions of people annually7,8 and potentially other resistance-evasive antimicrobials, including those that have recently been shown to operate through supramolecular structures that target specific lipids9.


Asunto(s)
Antifúngicos , Riñón , Polienos , Esteroles , Animales , Humanos , Ratones , Anfotericina B/análogos & derivados , Anfotericina B/química , Anfotericina B/toxicidad , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacología , Antifúngicos/toxicidad , Células Cultivadas , Colesterol/química , Colesterol/metabolismo , Farmacorresistencia Fúngica , Ergosterol/química , Ergosterol/metabolismo , Riñón/efectos de los fármacos , Cinética , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Micosis/microbiología , Polienos/química , Polienos/metabolismo , Polienos/farmacología , Pase Seriado , Esteroles/química , Esteroles/metabolismo , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 121(22): e2319094121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768341

RESUMEN

Protein-protein and protein-water hydrogen bonding interactions play essential roles in the way a protein passes through the transition state during folding or unfolding, but the large number of these interactions in molecular dynamics (MD) simulations makes them difficult to analyze. Here, we introduce a state space representation and associated "rarity" measure to identify and quantify transition state passage (transit) events. Applying this representation to a long MD simulation trajectory that captured multiple folding and unfolding events of the GTT WW domain, a small protein often used as a model for the folding process, we identified three transition categories: Highway (faster), Meander (slower), and Ambiguous (intermediate). We developed data sonification and visualization tools to analyze hydrogen bond dynamics before, during, and after these transition events. By means of these tools, we were able to identify characteristic hydrogen bonding patterns associated with "Highway" versus "Meander" versus "Ambiguous" transitions and to design algorithms that can identify these same folding pathways and critical protein-water interactions directly from the data. Highly cooperative hydrogen bonding can either slow down or speed up transit. Furthermore, an analysis of protein-water hydrogen bond dynamics at the surface of WW domain shows an increase in hydrogen bond lifetime from folded to unfolded conformations with Ambiguous transitions as an outlier. In summary, hydrogen bond dynamics provide a direct window into the heterogeneity of transits, which can vary widely in duration (by a factor of 10) due to a complex energy landscape.


Asunto(s)
Enlace de Hidrógeno , Simulación de Dinámica Molecular , Pliegue de Proteína , Proteínas , Proteínas/química , Proteínas/metabolismo , Agua/química , Dominios WW , Conformación Proteica , Algoritmos
4.
J Am Chem Soc ; 146(29): 20019-20032, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38991108

RESUMEN

Small, diffusible redox proteins play an essential role in electron transfer (ET) in respiration and photosynthesis, sustaining life on Earth by shuttling electrons between membrane-bound complexes via finely tuned and reversible interactions. Ensemble kinetic studies show transient ET complexes form in two distinct stages: an "encounter" complex largely mediated by electrostatic interactions, which subsequently, through subtle reorganization of the binding interface, forms a "productive" ET complex stabilized by additional hydrophobic interactions around the redox-active cofactors. Here, using single-molecule force spectroscopy (SMFS) we dissected the transient ET complexes formed between the photosynthetic reaction center-light harvesting complex 1 (RC-LH1) of Rhodobacter sphaeroides and its native electron donor cytochrome c2 (cyt c2). Importantly, SMFS resolves the distribution of interaction forces into low (∼150 pN) and high (∼330 pN) components, with the former more susceptible to salt concentration and to alteration of key charged residues on the RC. Thus, the low force component is suggested to reflect the contribution of electrostatic interactions in forming the initial encounter complex, whereas the high force component reflects the additional stabilization provided by hydrophobic interactions to the productive ET complex. Employing molecular dynamics simulations, we resolve five intermediate states that comprise the encounter, productive ET and leaving complexes, predicting a weak interaction between cyt c2 and the LH1 ring near the RC-L subunit that could lie along the exit path for oxidized cyt c2. The multimodal nature of the interactions of ET complexes captured here may have wider implications for ET in all domains of life.


Asunto(s)
Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Transporte de Electrón , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Citocromos c2/química , Citocromos c2/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo
5.
Biophys J ; 122(7): 1414-1422, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36916005

RESUMEN

Osmolytes are ubiquitous in the cell and play an important role in controlling protein stability under stress. The natural osmolyte trimethylamine N-oxide (TMAO) is used by marine animals to counteract the effect of pressure denaturation at large depths. The molecular mechanism of TMAO stabilization against pressure and urea denaturation has been extensively studied, but unlike the case of other osmolytes, the ability of TMAO to protect proteins from high temperature has not been quantified. To reveal the effect of TMAO on folded and unfolded protein ensembles and the hydration shell at different temperatures, we study a mutant of the well-characterized, fast-folding model protein B (PRB). We carried out, in total, >190 µs all-atom simulations of thermal folding/unfolding of PRB at multiple temperatures and concentrations of TMAO. The simulations show increased thermal stability of PRB in the presence of TMAO. Partly structured, compact ensembles are favored over the unfolded state. TMAO forms two shells near the protein: an outer shell away from the protein surface has altered H-bond lifetimes of water molecules and increases hydration of the protein to help stabilize it; a less-populated inner shell with an opposite TMAO orientation closer to the protein surface binds exclusively to basic side chains. The cooperative cosolute effect of the inner and outer shell TMAO has a small number of TMAO molecules "herding" water molecules into two hydration shells at or near the protein surface. The stabilizing effect of TMAO on our protein saturates at 1 M despite higher TMAO solubility, so there may be little evolutionary pressure for extremophiles to produce higher intracellular TMAO concentrations, if true in general.


Asunto(s)
Calor , Proteínas , Animales , Proteínas/química , Metilaminas/química , Agua/química , Urea
6.
Biophys J ; 122(20): 4113-4120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37735871

RESUMEN

The activity of many membrane receptors is controlled through their lateral association into dimers or higher-order oligomers. Although Förster resonance energy transfer (FRET) measurements have been used extensively to characterize the stability of receptor dimers, the utility of FRET in studies of larger oligomers has been limited. Here we introduce an effective equilibrium dissociation constant that can be extracted from FRET measurements for EphA2, a receptor tyrosine kinase (RTK) known to form active oligomers of heterogeneous distributions in response to its ligand ephrinA1-Fc. The newly introduced effective equilibrium dissociation constant has a well-defined physical meaning and biological significance. It denotes the receptor concentration for which half of the receptors are monomeric and inactive, and the other half are associated into oligomers and are active, irrespective of the exact oligomer size. This work introduces a new dimension to the utility of FRET in studies of membrane receptor association and signaling in the plasma membrane.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Transducción de Señal , Transferencia Resonante de Energía de Fluorescencia/métodos , Membrana Celular/metabolismo , Membranas , Proteínas de la Membrana/metabolismo
7.
Biochemistry ; 62(20): 3020-3032, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37747791

RESUMEN

Protein binding to negatively charged lipids is essential for maintaining numerous vital cellular processes where its dysfunction can lead to various diseases. One such protein that plays a crucial role in this process is lactadherin, which competes with coagulation factors for membrane binding sites to regulate blood clotting. Despite identifying key binding regions of these proteins through structural and biochemical studies, models incorporating membrane dynamics are still lacking. In this study, we report on the multimodal binding of lactadherin and use it to gain insight into the binding mechanisms of its C domain homologs, factor V and factor VIII. Molecular dynamics simulations enhanced with the highly mobile mimetic model enabled the determination of lactadherin's multimodal binding on membranes that revealed critical interacting residues consistent with prior NMR and mutagenesis data. The binding occurred primarily via two dynamic structural ensembles: an inserted state and an unreported, highly conserved side-lying state driven by a cationic patch. We utilized these findings to analyze the membrane binding domains of coagulation factors V and VIII and identified their preferred membrane-bound conformations. Specifically, factor V's C domains maintained an inserted state, while factor VIII preferred a tilted, side-lying state that permitted antibody binding. Insight into lactadherin's atomistically resolved membrane interactions from a multistate perspective can guide new therapeutic opportunities in treating diseases related to blood coagulation.


Asunto(s)
Factor VIII , Factor V , Factor VIII/química , Factor VIII/metabolismo , Factor V/química , Factor V/metabolismo , Sitios de Unión , Unión Proteica , Conformación Molecular
8.
J Am Chem Soc ; 145(28): 15043-15048, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37410392

RESUMEN

Cholesterol promotes the structural integrity of the fluid cell membrane and interacts dynamically with many membrane proteins to regulate function. Understanding site-resolved cholesterol structural dynamics is thus important. This long-standing challenge has thus far been addressed, in part, by selective isotopic labeling approaches. Here we present a new 3D solid-state NMR (SSNMR) experiment utilizing scalar 13C-13C polarization transfer and recoupling of the 1H-13C interactions in order to determine average dipolar couplings for all 1H-13C vectors in uniformly 13C-enriched cholesterol. The experimentally determined order parameters (OP) agree exceptionally well with molecular dynamics (MD) trajectories and reveal coupling among several conformational degrees of freedom in cholesterol molecules. Quantum chemistry shielding calculations further support this conclusion and specifically demonstrate that ring tilt and rotation are coupled to changes in tail conformation and that these coupled segmental dynamics dictate the orientation of cholesterol. These findings advance our understanding of physiologically relevant dynamics of cholesterol, and the methods that revealed them have broader potential to characterize how structural dynamics of other small molecules impact their biological functions.


Asunto(s)
Colesterol , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Membrana Celular , Conformación Molecular , Colesterol/química
9.
J Biol Chem ; 297(1): 100876, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34139238

RESUMEN

The Eph receptor tyrosine kinases and their ephrin ligands regulate many physiological and pathological processes. EphA4 plays important roles in nervous system development and adult homeostasis, while aberrant EphA4 signaling has been implicated in neurodegeneration. EphA4 may also affect cancer malignancy, but the regulation and effects of EphA4 signaling in cancer are poorly understood. A correlation between decreased patient survival and high EphA4 mRNA expression in melanoma tumors that also highly express ephrinA ligands suggests that enhanced EphA4 signaling may contribute to melanoma progression. A search for EphA4 gain-of-function mutations in melanoma uncovered a mutation of the highly conserved leucine 920 in the EphA4 sterile alpha motif (SAM) domain. We found that mutation of L920 to phenylalanine (L920F) potentiates EphA4 autophosphorylation and signaling, making it the first documented EphA4 cancer mutation that increases kinase activity. Quantitative Föster resonance energy transfer and fluorescence intensity fluctuation (FIF) analyses revealed that the L920F mutation induces a switch in EphA4 oligomer size, from a dimer to a trimer. We propose this switch in oligomer size as a novel mechanism underlying EphA4-linked tumorigenesis. Molecular dynamics simulations suggest that the L920F mutation alters EphA4 SAM domain conformation, leading to the formation of EphA4 trimers that assemble through two aberrant SAM domain interfaces. Accordingly, EphA4 wild-type and the L920F mutant are affected differently by the SAM domain and are differentially regulated by ephrin ligand stimulation. The increased EphA4 activation induced by the L920F mutation, through the novel mechanism we uncovered, supports a functional role for EphA4 in promoting pathogenesis.


Asunto(s)
Mutación Missense , Neoplasias/genética , Receptor EphA4/química , Transducción de Señal , Motivo alfa Estéril , Células HEK293 , Humanos , Multimerización de Proteína , Receptor EphA4/genética , Receptor EphA4/metabolismo
10.
J Am Chem Soc ; 144(46): 21116-21124, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36351243

RESUMEN

Thiazole-containing pyritides (thiopeptides) are ribosomally synthesized and post-translationally modified peptides (RiPPs) that have attracted interest owing to their potent biological activities and structural complexity. The class-defining feature of a thiopeptide is a six-membered, nitrogenous heterocycle formed by an enzymatic [4 + 2]-cycloaddition. In rare cases, piperidine or dehydropiperidine (DHP) is present; however, the aromatized pyridine is considerably more common. Despite significant effort, the mechanism by which the central pyridine is formed remains poorly understood. Building on our recent observation of the Bycroft-Gowland intermediate (i.e., the direct product of the [4 + 2]-cycloaddition), we interrogated thiopeptide pyridine synthases using a combination of targeted mutagenesis, kinetic assays, substrate analogs, enzyme-substrate cross-linking, and chemical rescue experiments. Collectively, our data delineate roles for several conserved residues in thiopeptide pyridine synthases. A critical tyrosine facilitates the final aromatization step of pyridine formation. This work provides a foundation for further exploration of the [4 + 2]-cycloaddition reaction and future customization of pyridine-containing macrocyclic peptides.


Asunto(s)
Péptidos , Tiazoles , Péptidos/química , Tiazoles/química , Reacción de Cicloadición , Piridinas
11.
Proc Natl Acad Sci U S A ; 116(12): 5356-5361, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30837309

RESUMEN

As theory and experiment have shown, protein dehydration is a major contributor to protein folding. Dehydration upon folding can be characterized directly by all-atom simulations of fast pressure drops, which create desolvated pockets inside the nascent hydrophobic core. Here, we study pressure-drop refolding of three λ-repressor fragment (λ6-85) mutants computationally and experimentally. The three mutants report on tertiary structure formation via different fluorescent helix-helix contact pairs. All-atom simulations of pressure drops capture refolding and unfolding of all three mutants by a similar mechanism, thus validating the nonperturbative nature of the fluorescent contact probes. Analysis of simulated interprobe distances shows that the α-helix 1-3 pair distance displays a slower characteristic time scale than the 1-2 or 3-2 pair distance. To see whether slow packing of α-helices 1 and 3 is reflected in the rate-limiting folding step, fast pressure-drop relaxation experiments captured refolding on a millisecond time scale. These experiments reveal that refolding monitored by 1-3 contact formation indeed is much slower than when monitored by 1-2 or 3-2 contact formation. Unlike the case of the two-state folder [three-α-helix bundle (α3D)], whose drying and core formation proceed in concert, λ6-85 repeatedly dries and rewets different local tertiary contacts before finally forming a solvent-excluded core, explaining the non-two-state behavior observed during refolding in molecular dynamics simulations. This work demonstrates that proteins can explore desolvated pockets and dry globular states numerous times before reaching the native conformation.


Asunto(s)
Deshidratación/metabolismo , Proteínas/metabolismo , Escherichia coli/metabolismo , Fluorescencia , Cinética , Simulación de Dinámica Molecular , Presión , Conformación Proteica en Hélice alfa/fisiología , Pliegue de Proteína , Solventes/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(49): 12928-12933, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158402

RESUMEN

The [4+2] cycloaddition reaction is an enabling transformation in modern synthetic organic chemistry, but there are only limited examples of dedicated natural enzymes that can catalyze this transformation. Thiopeptides (or more formally thiazolyl peptides) are a class of thiazole-containing, highly modified, macrocyclic secondary metabolites made from ribosomally synthesized precursor peptides. The characteristic feature of these natural products is a six-membered nitrogenous heterocycle that is assembled via a formal [4+2] cycloaddition between two dehydroalanine (Dha) residues. This heteroannulation is entirely contingent on enzyme activity, although the mechanism of the requisite pyridine/dehydropiperidine synthase remains to be elucidated. The unusual aza-cylic product is distinct from the more common carbocyclic products of synthetic and biosynthetic [4+2] cycloaddition reactions. To elucidate the mechanism of cycloaddition, we have determined atomic resolution structures of the pyridine synthases involved in the biosynthesis of the thiopeptides thiomuracin (TbtD) and GE2270A (PbtD), in complex with substrates and product analogs. Structure-guided biochemical, mutational, computational, and binding studies elucidate active-site features that explain how orthologs can generate rigid macrocyclic scaffolds of different sizes. Notably, the pyridine synthases show structural similarity to the elimination domain of lanthipeptide dehydratases, wherein insertions of secondary structural elements result in the formation of a distinct active site that catalyzes different chemistry. Comparative analysis identifies other catalysts that contain a shared core protein fold but whose active sites are located in entirely different regions, illustrating a principle predicted from efforts in de novo protein design.


Asunto(s)
Proteínas Bacterianas/química , Péptido Sintasas/química , Actinobacteria/enzimología , Secuencia de Aminoácidos , Antibiosis , Sitios de Unión , Biocatálisis , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Reacción de Cicloadición , Modelos Moleculares , Péptidos Cíclicos/biosíntesis , Unión Proteica , Tiazoles
13.
J Am Chem Soc ; 141(20): 8228-8238, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31059252

RESUMEN

Recently developed bioinformatic tools have bolstered the discovery of ribosomally synthesized and post-translationally modified peptides (RiPPs). Using an improved version of Rapid ORF Description and Evaluation Online (RODEO 2.0), a biosynthetic gene cluster mining algorithm, we bioinformatically mapped the sactipeptide RiPP class via the radical S-adenosylmethionine (SAM) enzymes that form the characteristic sactionine (sulfur-to-α carbon) cross-links between cysteine and acceptor residues. Hundreds of new sactipeptide biosynthetic gene clusters were uncovered, and a novel sactipeptide "huazacin" with growth-suppressive activity against Listeria monocytogenes was characterized. Bioinformatic analysis further suggested that a group of sactipeptide-like peptides heretofore referred to as six cysteines in forty-five residues (SCIFFs) might not be sactipeptides as previously thought. Indeed, the bioinformatically identified SCIFF peptide "freyrasin" was demonstrated to contain six thioethers linking the ß carbons of six aspartate residues. Another SCIFF, thermocellin, was shown to contain a thioether cross-linked to the γ carbon of threonine. SCIFFs feature a different paradigm of non-α carbon thioether linkages, and they are exclusively formed by radical SAM enzymes, as opposed to the polar chemistry employed during lanthipeptide biosynthesis. Therefore, we propose the renaming of the SCIFF family as radical non-α thioether peptides (ranthipeptides) to better distinguish them from the sactipeptide and lanthipeptide RiPP classes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Péptidos/metabolismo , Sulfuros/metabolismo , Secuencia de Aminoácidos , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Biología Computacional/métodos , Enzimas/metabolismo , Internet , Familia de Multigenes , Péptidos/genética , Procesamiento Proteico-Postraduccional , S-Adenosilmetionina/metabolismo , Terminología como Asunto
14.
Biochemistry ; 57(50): 6897-6905, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30456950

RESUMEN

The plasma membrane of the cell is a complex, tightly regulated, heterogeneous environment shaped by proteins, lipids, and small molecules. Ca2+ ions are important cellular messengers, spatially separated from anionic lipids. After cell injury, disease, or apoptotic events, anionic lipids are externalized to the outer leaflet of the plasma membrane and encounter Ca2+, resulting in dramatic changes in the plasma membrane structure and initiation of signaling cascades. Despite the high chemical and biological significance, the structures of lipid-Ca2+ nanoclusters are still not known. Previously, we demonstrated by solid-state nuclear magnetic resonance (NMR) spectroscopy that upon binding to Ca2+, individual phosphatidylserine lipids populate two distinct yet-to-be-characterized structural environments. Here, we concurrently employ extensive all-atom molecular dynamics (MD) simulations with our accelerated membrane mimetic and detailed NMR measurements to identify lipid-Ca2+ nanocluster conformations. We find that major structural characteristics of these nanoclusters, including interlipid pair distances and chemical shifts, agree with observable NMR parameters. Simulations reveal that lipid-ion nanoclusters are shaped by two characteristic, long-lived lipid structures induced by divalent Ca2+. Using ab initio quantum mechanical calculations of chemical shifts on MD-captured lipid-ion complexes, we show that computationally observed conformations are validated by experimental NMR data. Both NMR measurements of diluted specifically labeled lipids and MD simulations reveal that the basic structural unit that reshapes the membrane is a Ca2+-coordinated phosphatidylserine tetramer. Our combined computational and experimental approach presented here can be applied to other complex systems in which charged membrane-active molecular agents leave structural signatures on lipids.


Asunto(s)
Calcio/química , Membrana Celular/química , Lípidos de la Membrana/química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Iones/química , Iones/metabolismo , Espectroscopía de Resonancia Magnética , Lípidos de la Membrana/metabolismo , Conformación Molecular , Simulación de Dinámica Molecular , Nanoestructuras/química , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(26): 7966-71, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26080403

RESUMEN

Fast protein folding involves complex dynamics in many degrees of freedom, yet microsecond folding experiments provide only low-resolution structural information. We enhance the structural resolution of the five-helix bundle protein λ6-85 by engineering into it three fluorescent tryptophan-tyrosine contact probes. The probes report on distances between three different helix pairs: 1-2, 1-3, and 3-2. Temperature jump relaxation experiments on these three mutants reveal two different kinetic timescales: a slower timescale for 1-3 and a faster one for the two contacts involving helix 2. We hypothesize that these differences arise from a single folding mechanism that forms contacts on different timescales, and not from changes of mechanism due to adding the probes. To test this hypothesis, we analyzed the corresponding three distances in one published single-trajectory all-atom molecular-dynamics simulation of a similar mutant. Autocorrelation analysis of the trajectory reveals the same "slow" and "fast" distance change as does experiment, but on a faster timescale; smoothing the trajectory in time shows that this ordering is robust and persists into the microsecond folding timescale. Structural investigation of the all-atom computational data suggests that helix 2 misfolds to produce a short-lived off-pathway trap, in agreement with the experimental finding that the 1-2 and 3-2 distances involving helix 2 contacts form a kinetic grouping distinct from 1 to 3. Our work demonstrates that comparison between experiment and simulation can be extended to several order parameters, providing a stronger mechanistic test.


Asunto(s)
Colorantes Fluorescentes/química , Pliegue de Proteína , Cinética , Simulación de Dinámica Molecular , Mutación , Triptófano/química , Tirosina/química
16.
Biochim Biophys Acta ; 1858(7 Pt B): 1573-83, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26940626

RESUMEN

Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Modelos Químicos , Modelos Moleculares , Sitios de Unión , Simulación por Computador , Fluidez de la Membrana , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos
17.
Biochemistry ; 55(13): 2031-42, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26953503

RESUMEN

Human islet amyloid polypeptide (hIAPP) is a 37-residue peptide hormone, which upon misfolding changes from the physiologically active monomer into pathological amyloid fibril aggregates in the pancreas of type 2 diabetes mellitus patients. During this process, the insulin-producing pancreatic ß-cells are damaged; however, the underlying mechanism of this mode of cytotoxicity remains elusive. It is known that anionic lipids accelerate amyloid fibril formation, implicating the importance of the cellular membrane in the process, and that a pH close to the level in the ß-cell secretory granules (pH 5.5) inhibits amyloid fibril formation. Using all-atom molecular dynamics simulations, we have investigated the membrane-associated monomer state of α-helical hIAPP, analyzed specific interactions of hIAPP with a mixed anionic-zwitterionic lipid membrane and examined the influence of pH on the structure and dynamics of hIAPP and its interaction with the membrane. We find that hIAPP primarily interacts with the membrane by forming favorable interactions between anionic lipids and the positively charged residues in the N-terminal part of the peptide. Rationalizing experimental findings, the simulations show that the N-terminal part of the peptide interacts with the membrane in the lipid headgroup region. At neutral pH, the C-terminal part of the peptide, which contains the residues that initiate fibril formation, displays a highly dynamic, unfolded state, which interacts with the membrane significantly less than the N-terminal part. Such an unfolded form can be proposed to contribute to the acceleration of fibril formation. At low pH, protonation of His18 mediates a stronger interaction of the C-terminal part with the membrane, resulting in the immobilization of the C-terminal part on the membrane surface that might constitute a mechanism by which low pH inhibits fibril formation.


Asunto(s)
Membrana Celular/química , Polipéptido Amiloide de los Islotes Pancreáticos/química , Modelos Moleculares , Agregación Patológica de Proteínas/etiología , Membrana Celular/metabolismo , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Cinética , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Terciaria de Proteína , Desplegamiento Proteico , Solubilidad , Liposomas Unilamelares
19.
Biophys J ; 109(10): 2012-22, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26588561

RESUMEN

Slow diffusion of the lipids in conventional all-atom simulations of membrane systems makes it difficult to sample large rearrangements of lipids and protein-lipid interactions. Recently, Tajkhorshid and co-workers developed the highly mobile membrane-mimetic (HMMM) model with accelerated lipid motion by replacing the lipid tails with small organic molecules. The HMMM model provides accelerated lipid diffusion by one to two orders of magnitude, and is particularly useful in studying membrane-protein associations. However, building an HMMM simulation system is not easy, as it requires sophisticated treatment of the lipid tails. In this study, we have developed CHARMM-GUI HMMM Builder (http://www.charmm-gui.org/input/hmmm) to provide users with ready-to-go input files for simulating HMMM membrane systems with/without proteins. Various lipid-only and protein-lipid systems are simulated to validate the qualities of the systems generated by HMMM Builder with focus on the basic properties and advantages of the HMMM model. HMMM Builder supports all lipid types available in CHARMM-GUI and also provides a module to convert back and forth between an HMMM membrane and a full-length membrane. We expect HMMM Builder to be a useful tool in studying membrane systems with enhanced lipid diffusion.


Asunto(s)
Membrana Celular/química , Simulación de Dinámica Molecular , Programas Informáticos , Secuencia de Aminoácidos , Lípidos de la Membrana/química , Proteínas de la Membrana/química , Datos de Secuencia Molecular
20.
J Am Chem Soc ; 137(48): 15102-4, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26580003

RESUMEN

Amphotericin B (AmB) is the archetype for small molecules that form ion channels in living systems and has recently been shown to replace a missing protein ion transporter and thereby restore physiology in yeast. Molecular modeling studies predict that AmB self-assembles in lipid membranes with the polyol region lining a channel interior that funnels to its narrowest region at the C3-hydroxyl group. This model predicts that modification of this functional group would alter conductance of the AmB ion channel. To test this hypothesis, the C3-hydroxyl group was synthetically deleted, and the resulting derivative, C3deoxyAmB (C3deOAmB), was characterized using multidimensional NMR experiments and single ion channel electrophysiology recordings. C3deOAmB possesses the same macrocycle conformation as AmB and retains the capacity to form transmembrane ion channels, yet the conductance of the C3deOAmB channels is 3-fold lower than that of AmB channels. Thus, the C3-hydroxyl group plays an important role in AmB ion channel conductance, and synthetic modifications at this position may provide an opportunity for further tuning of channel functions.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Anfotericina B/química , Antifúngicos/química , Transporte Iónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA