Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 11(1): 84, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217978

RESUMEN

The myelinated white matter tracts of the central nervous system (CNS) are essential for fast transmission of electrical impulses and are often differentially affected in human neurodegenerative diseases across CNS region, age and sex. We hypothesize that this selective vulnerability is underpinned by physiological variation in white matter glia. Using single nucleus RNA sequencing of human post-mortem white matter samples from the brain, cerebellum and spinal cord and subsequent tissue-based validation we found substantial glial heterogeneity with tissue region: we identified region-specific oligodendrocyte precursor cells (OPCs) that retain developmental origin markers into adulthood, distinguishing them from mouse OPCs. Region-specific OPCs give rise to similar oligodendrocyte populations, however spinal cord oligodendrocytes exhibit markers such as SKAP2 which are associated with increased myelin production and we found a spinal cord selective population particularly equipped for producing long and thick myelin sheaths based on the expression of genes/proteins such as HCN2. Spinal cord microglia exhibit a more activated phenotype compared to brain microglia, suggesting that the spinal cord is a more pro-inflammatory environment, a difference that intensifies with age. Astrocyte gene expression correlates strongly with CNS region, however, astrocytes do not show a more activated state with region or age. Across all glia, sex differences are subtle but the consistent increased expression of protein-folding genes in male donors hints at pathways that may contribute to sex differences in disease susceptibility. These findings are essential to consider for understanding selective CNS pathologies and developing tailored therapeutic strategies.


Asunto(s)
Neuroglía , Sustancia Blanca , Humanos , Femenino , Masculino , Ratones , Animales , Neuroglía/metabolismo , Médula Espinal/patología , Vaina de Mielina/metabolismo , Oligodendroglía/patología
2.
Dev Cell ; 57(11): 1421-1436.e5, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523173

RESUMEN

Oligodendrogenesis in the human central nervous system has been observed mainly at the second trimester of gestation, a much later developmental stage compared to oligodendrogenesis in mice. Here, we characterize the transcriptomic neural diversity in the human forebrain at post-conception weeks (PCW) 8-10. Using single-cell RNA sequencing, we find evidence of the emergence of a first wave of oligodendrocyte lineage cells as early as PCW 8, which we also confirm at the epigenomic level through the use of single-cell ATAC-seq. Using regulatory network inference, we predict key transcriptional events leading to the specification of oligodendrocyte precursor cells (OPCs). Moreover, by profiling the spatial expression of 50 key genes through the use of in situ sequencing (ISS), we identify regions in the human ventral fetal forebrain where oligodendrogenesis first occurs. Our results indicate evolutionary conservation of the first wave of oligodendrogenesis between mice and humans and describe regulatory mechanisms involved in human OPC specification.


Asunto(s)
Oligodendroglía , Prosencéfalo , Animales , Diferenciación Celular/fisiología , Humanos , Ratones , Oligodendroglía/metabolismo , Transcriptoma/genética
3.
Sci Signal ; 13(635)2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518143

RESUMEN

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.


Asunto(s)
Encéfalo , Colágeno , Matriz Extracelular , Polimorfismo de Nucleótido Simple , Infección por el Virus Zika , Virus Zika , Encéfalo/metabolismo , Encéfalo/patología , Colágeno/genética , Colágeno/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Humanos , Recién Nacido , Masculino , Síndrome , Infección por el Virus Zika/congénito , Infección por el Virus Zika/genética , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA