Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 74(5): 1435-48, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25367844

RESUMEN

PURPOSE: To assess the possible utility of machine learning for classifying subjects with and subjects without osteoarthritis using sodium magnetic resonance imaging data. Theory: Support vector machine, k-nearest neighbors, naïve Bayes, discriminant analysis, linear regression, logistic regression, neural networks, decision tree, and tree bagging were tested. METHODS: Sodium magnetic resonance imaging with and without fluid suppression by inversion recovery was acquired on the knee cartilage of 19 controls and 28 osteoarthritis patients. Sodium concentrations were measured in regions of interests in the knee for both acquisitions. Mean (MEAN) and standard deviation (STD) of these concentrations were measured in each regions of interest, and the minimum, maximum, and mean of these two measurements were calculated over all regions of interests for each subject. The resulting 12 variables per subject were used as predictors for classification. RESULTS: Either Min [STD] alone, or in combination with Mean [MEAN] or Min [MEAN], all from fluid suppressed data, were the best predictors with an accuracy >74%, mainly with linear logistic regression and linear support vector machine. Other good classifiers include discriminant analysis, linear regression, and naïve Bayes. CONCLUSION: Machine learning is a promising technique for classifying osteoarthritis patients and controls from sodium magnetic resonance imaging data.


Asunto(s)
Cartílago Articular/anatomía & histología , Cartílago Articular/patología , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Osteoartritis/patología , Algoritmos , Humanos , Rodilla/anatomía & histología , Sodio
2.
Science ; 380(6643): 416-420, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37053263

RESUMEN

Ultraviolet light from early galaxies is thought to have ionized gas in the intergalactic medium. However, there are few observational constraints on this epoch because of the faintness of those galaxies and the redshift of their optical light into the infrared. We report the observation, in JWST imaging, of a distant galaxy that is magnified by gravitational lensing. JWST spectroscopy of the galaxy, at rest-frame optical wavelengths, detects strong nebular emission lines that are attributable to oxygen and hydrogen. The measured redshift is z = 9.51 ± 0.01, corresponding to 510 million years after the Big Bang. The galaxy has a radius of [Formula: see text] parsecs, which is substantially more compact than galaxies with equivalent luminosity at z ~ 6 to 8, leading to a high star formation rate surface density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA