RESUMEN
BACKGROUND: The human host elicits specific immune responses after exposure to various life stages of the malaria parasite as well as components of mosquito saliva injected into the host during a mosquito bite. This study describes differences in IgG responses against antigens derived from the sporozoite (PfCSP), asexual stage parasite (PfEBA175) and the gametocyte (Pfs230), in addition to an Anopheles gambiae salivary gland antigen (gSG6-P1), in two communities in Ghana with similar blood stage malaria parasite prevalence. METHODS: This study used archived plasma samples collected from an earlier cross-sectional study that enrolled volunteers aged from 6 months to 70 years from Simiw, peri-urban community (N = 347) and Obom, rural community (N = 291). An archived thick and thin blood smear for microscopy was used for the estimation of Plasmodium parasite density and species and DNA extraction from blood spots and P. falciparum confirmation was performed using PCR. This study used the stored plasma samples to determine IgG antibody levels to P. falciparum and Anopheles salivary antigens using indirect ELISA. RESULTS: Individuals from Simiw had significantly higher levels of IgG against mosquito gSG6-P1 [median (95%CI)] [2.590 (2.452-2.783) ng/mL] compared to those from Obom [2.119 (1.957-2.345) ng/mL], p < 0.0001. Both IgG responses against Pfs230proC (p = 0.0006), and PfCSP (p = 0.002) were significantly lower in volunteers from Simiw compared to the participants from Obom. The seroprevalence of PfEBA-175.5R (p = 0.8613), gSG6-P1 (p = 0.0704), PfCSP (p = 0.7798) IgG were all similar in Obom and Simiw. However, Pfs230 seroprevalence was significantly higher at Obom compared to Simiw (p = 0.0006). Spearman correlation analysis showed no significant association between IgG responses against gSG6-P1, PfCSP, Pfs230proC and PfEBA-175.5R and parasite density at both Obom and Simiw (p > 0.05). CONCLUSION: In conclusion, the study showed that participants from Simiw had higher concentrations of circulating gSG6-P1 IgG antibodies but lower concentrations of P. falciparum antibodies, PfCSP IgG and Pfs230proC IgG compared to participants from Obom.
Asunto(s)
Anopheles , Mordeduras y Picaduras de Insectos , Malaria Falciparum , Malaria , Animales , Humanos , Plasmodium falciparum , Ghana/epidemiología , Formación de Anticuerpos , Estudios Seroepidemiológicos , Estudios Transversales , Malaria Falciparum/parasitología , Malaria/epidemiología , Inmunoglobulina G , Anopheles/fisiologíaRESUMEN
BACKGROUND: Wetlands and irrigated agricultural crops create potential breeding sites for Anopheles mosquitoes, leading to a heterogeneity in malaria transmission. In agricultural areas, heterogeneity of malaria transmission is often associated with the presence of hotspots consisting of localized clusters of higher transmission intensity. This study aims to identify micro-geographic hotspots of malaria transmission in an agricultural setting using a multidisciplinary approach. METHODS: Two cross-sectional surveys were conducted at the end of the dry season and at the peak of the rainy season in rural and urban sites in Bouna, northeastern Côte d'Ivoire. A total of 296 individuals from 148 farming households were randomly selected and sociological, geographical, entomological, and clinical data as well as blood samples were collected during each visit. Parasitological data and Anopheles exposure (measured using entomological and immunological methods) were compared with demographic, agricultural, and geographic data to identify drivers of malaria transmission. Heat maps combining these data were used to identify households with ongoing malaria transmission throughout the year. RESULTS: In rural areas, Plasmodium prevalence was consistent between the dry and the rainy seasons, with roughly half of the population infected. In urban areas, malaria transmission indicators were lower, with a parasite prevalence of less than 20%, which remained comparable between the dry and the rainy season. The presence of irrigated crops and proximity to wetlands were associated with increased Anopheles exposure. By mapping Plasmodium infection and Anopheles exposure, two different types of hotspots of malaria transmission were identified: micro-geographical scale and local scale hotspots. CONCLUSIONS: The presence of wetlands in urban areas and irrigated agriculture in rural areas resulted in heterogeneity in malaria transmission on a micro-geographical scale. These specific households present particular risk of malaria transmission and could fuel malaria transmission in surrounding households. The identification of micro-geographical areas using heat maps combining several epidemiological parameters can help to identify hotspots of malaria transmission. The implementation of malaria control measures, such as seasonal chemoprophylaxis or vector control, in these areas could help to reduce the incidence of malaria and facilitate its elimination.
Asunto(s)
Anopheles , Malaria , Animales , Humanos , Côte d'Ivoire/epidemiología , Estudios Transversales , Mosquitos Vectores , Malaria/prevención & control , Agricultura , Estaciones del AñoRESUMEN
Agroecosystems have been associated with risk of malaria. The aim of this study was to determine the relationship between three agroecosystems: (i) rubber plantation (RP); (ii) oil palm plantation (OPP); (iii) no cash crop plantation (NCCP) and the prevalence of Plasmodium falciparum infection among children living in the Aboisso region. In the three villages within (Ehania-V5) or close (N'zikro) or far from (Ayébo) to each agroecosystem (RP, OPP, and NCCP), two cross-sectional parasitological surveys were carried out during the dry and the peak of the long wet seasons. A total of 586 children aged 1-14 years were recruited in the three villages to determine the prevalence of malaria using conventional microscopy. Plasmodium falciparum was the dominant species with an overall infection prevalence of 40.8%. There was a significant difference in prevalence between agroecosystems, during both the dry (p = 0.002) and wet seasons (p < 0.001), which was higher in agricultural settings compared with the NCCP environment, whatever the season. The prevalence of P. falciparum infection increased from the dry to the wet season in agricultural settings (RP and OPP), whereas no difference was noted for NCCP. Less than 18% of children use insecticide-treated nets (ITNs) in the three villages, ranging from 6 (in RP) to 30% (in OPP). Multivariate analysis indicated that age (1-4; 5-9; and 10-14 years) was not associated with malaria risk, but the season and living in agricultural villages were associated with a greater risk of malaria infection. Risk of malaria exposure was fourfold higher in children from agricultural villages than their counterpart from the non-agricultural area. Our findings highlight significant variations in the prevalence of P. falciparum according to agroecosystem and season. The findings will be useful in designing and implementing malaria control interventions by the National Malaria Control Program.
Asunto(s)
Insecticidas , Malaria Falciparum , Niño , Côte d'Ivoire/epidemiología , Estudios Transversales , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Plasmodium falciparum , Prevalencia , Estaciones del AñoRESUMEN
BACKGROUND: In malaria-endemic areas, human populations are frequently exposed to immunomodulatory salivary components injected during mosquito blood feeding. The consequences on pathogen-specific immune responses are not well known. This study evaluated and compared the humoral responses specific to merozoite stage vaccine candidates of Plasmodium falciparum, in children differentially exposed to Anopheles bites in a natural setting. METHODS: The cross-sectional study was carried out in Bouaké (Côte d'Ivoire) where entomological data and blood samples from children (0-14 years) were collected in two sites with similar malaria prevalence. Antibody (IgG, IgG1, IgG3) responses to PfAMA1 and PfMSP1 were evaluated by ELISA. Univariate and multivariate analysis were performed to assess the relationship between the immune responses to P. falciparum antigens and exposure to Anopheles bites in the total cohort and in each site, separately. The individual level of exposure to Anopheles bites was evaluated by quantifying specific IgG response to the Anopheles gSG6-P1 salivary peptide, which represents a proxy of Anopheles exposure. RESULTS: The anti-Plasmodium humoral responses were different according to the level of exposure of children, with those highly exposed to Anopheles presenting significantly lower antibody responses to PfMSP1 in total population (IgG and IgG3) and in Petessou village (IgG, IgG1, IgG3). No significant difference was seen for PfAMA1 antigen between children differently exposed to Anopheles. In Dar-es-Salam, a neighbourhood where a high Culex density was reported, children presented very low antibody levels specific to both antigens, and no difference according to the exposure to Anopheles bites was found. CONCLUSION: These findings may suggest that immunomodulatory components of Anopheles saliva, in addition to other factors, may participate to the modulation of the humoral response specific to Plasmodium merozoite stage antigens. This epidemiological observation may form a starting point for additional work to decipher the role of mosquito saliva on the modulation of the anti-Plasmodium acquired immunity and clinical protection in combining both field and ex vivo immunological studies.
Asunto(s)
Anopheles/fisiología , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Mordeduras y Picaduras de Insectos , Plasmodium falciparum/inmunología , Adolescente , Animales , Formación de Anticuerpos , Niño , Preescolar , Côte d'Ivoire , Estudios Transversales , Femenino , Humanos , Lactante , Malaria Falciparum/inmunología , MasculinoRESUMEN
BACKGROUND: In some African cities, urban malaria is a threat to the health and welfare of city dwellers. To improve the control of the disease, it is critical to identify neighbourhoods where the risk of malaria transmission is the highest. This study aims to evaluate the heterogeneity of malaria transmission risk in one city (Bouaké) in a West African country (Côte d'Ivoire) that presents several levels of urbanization. METHODS: Two cross-sectional studies were conducted in three neighbourhoods (Dar-es-Salam, Kennedy and N'gattakro) in Bouaké during both the rainy and dry seasons. Data on insecticide-treated net (ITN) use and blood samples were collected from children aged between 6 months and 15 years to determine the parasite density and the prevalence of Plasmodium falciparum and the level of IgG against the Anopheles gSG6-P1 salivary peptide, used as the biomarker of Anopheles bite exposure. RESULTS: The specific IgG levels to the gSG6-P1 salivary peptide in the rainy season were significantly higher compared to the dry season in all neighbourhoods studied (all p < 0.001). Interestingly, these specific IgG levels did not differ between neighbourhoods during the rainy season, whereas significant differences in IgG level were observed in the dry season (p = 0.034). ITN use could be a major factor of variation in the specific IgG level. Nevertheless, no difference in specific IgG levels to the gSG6-P1 salivary peptide was observed between children who declared "always" versus "never" sleeping under an ITN in each neighbourhood. In addition, the prevalence of P. falciparum in the whole population and immune responders was significantly different between neighbourhoods in each season (p < 0.0001). CONCLUSION: This study highlights the high risk of malaria exposure in African urban settings and the high heterogeneity of child exposure to the Anopheles vector between neighbourhoods in the same city. The Anopheles gSG6-P1 salivary peptide could be a suitable biomarker to accurately and quantitatively assess the risk of malaria transmission in urban areas.
Asunto(s)
Transmisión de Enfermedad Infecciosa , Exposición a Riesgos Ambientales , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Mosquitos Vectores/crecimiento & desarrollo , Población Urbana , Adolescente , Animales , Anticuerpos Antiprotozoarios/sangre , Niño , Preescolar , Ciudades/epidemiología , Côte d'Ivoire/epidemiología , Estudios Transversales , Utilización de Equipos y Suministros , Femenino , Humanos , Inmunoglobulina G/sangre , Lactante , Proteínas de Insectos/inmunología , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Masculino , Plasmodium falciparum/inmunología , Plasmodium falciparum/aislamiento & purificación , Medición de Riesgo , Proteínas y Péptidos Salivales/inmunología , Estaciones del Año , Estudios SeroepidemiológicosRESUMEN
Background: The modalities of malaria transmission along the Thailand-Myanmar border are poorly understood. Here we address the relevance of using a specific Anopheles salivary biomarker to measure the risk among humans of exposure to Anopheles bites. Methods: Serologic surveys were conducted from May 2013 to December 2014 in 4 sentinel villages. More than 9400 blood specimens were collected in filter papers from all inhabitants at baseline and then every 3 months thereafter, for up to 18 months, for analysis by enzyme-linked immunosorbent assay. The relationship between the intensity of the human antibody response and entomological indicators of transmission (human biting rates and entomological inoculation rates [EIRs]) was studied using a multivariate 3-level mixed model analysis. Heat maps for human immunoglobulin G (IgG) responses for each village and survey time point were created using QGIS 2.4. Results: The levels of IgG response among participants varied significantly according to village, season, and age (P<.001) and were positively associated with the abundance of total Anopheles species and primary malaria vectors and the EIR (P<.001). Spatial clusters of high-IgG responders were identified across space and time within study villages. Conclusions: The gSG6-P1 biomarker has great potential to address the risk of transmission along the Thailand-Myanmar border and represents a promising tool to guide malaria interventions.
Asunto(s)
Anopheles/inmunología , Biomarcadores/sangre , Inmunoglobulina G/sangre , Proteínas de Insectos/inmunología , Malaria/diagnóstico , Proteínas y Péptidos Salivales/inmunología , Adolescente , Adulto , Anciano , Animales , Niño , Preescolar , Estudios de Cohortes , Exposición a Riesgos Ambientales , Femenino , Humanos , Inmunoglobulina G/inmunología , Lactante , Recién Nacido , Mordeduras y Picaduras de Insectos , Malaria/sangre , Malaria/terapia , Masculino , Persona de Mediana Edad , Mianmar , Tailandia , Adulto JovenRESUMEN
BACKGROUND: The estimates of risk of malaria in early childhood are imprecise given the current entomologic and parasitological tools. Thus, the utility of anti-Anopheles salivary gSG6-P1 peptide antibody responses in measuring exposure to Anopheles bites during early infancy has been assessed. METHODS: Anti-gSG6-P1 IgG and IgM levels were evaluated in 133 infants (in Benin) at three (M3), six (M6), nine (M9) and 12 (M12) months of age. Specific IgG levels were also assessed in their respective umbilical cord blood (IUCB) and maternal blood (MPB). RESULTS: At M3, 93.98 and 41.35% of infants had anti-gSG6-P1 IgG and IgM Ab, respectively. Specific median IgG and IgM levels gradually increased between M3 and M6 (p < 0.0001 and p < 0.001), M6-M9 (p < 0.0001 and p = 0.085) and M9-M12 (p = 0.002 and p = 0.03). These levels were positively associated with the Plasmodium falciparum infection intensity (p = 0.006 and 0.003), and inversely with the use of insecticide-treated bed nets (p = 0.003 and 0.3). Levels of specific IgG in the MPB were positively correlated to those in the IUCB (R = 0.73; p < 0.0001) and those at M3 (R = 0.34; p < 0.0001). CONCLUSION: The exposure level to Anopheles bites, and then the risk of malaria infection, can be evaluated in young infants by assessing anti-gSG6-P1 IgM and IgG responses before and after 6-months of age, respectively. This tool can be useful in epidemiological evaluation and surveillance of malaria risk during the first year of life.
Asunto(s)
Anopheles/inmunología , Biomarcadores/sangre , Mordeduras y Picaduras/inmunología , Malaria/epidemiología , Malaria/transmisión , Proteínas y Péptidos Salivales/inmunología , Animales , Anopheles/química , Femenino , Humanos , Inmunidad Materno-Adquirida/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Lactante , EmbarazoRESUMEN
BACKGROUND: Evaluation of malaria sporozoite rates in the salivary glands of Anopheles gambiae is essential for estimating the number of infective mosquitoes, and consequently, the entomological inoculation rate (EIR). EIR is a key indicator for evaluating the risk of malaria transmission. Although the enzyme-linked immunosorbent assay specific for detecting the circumsporozoite protein (CSP-ELISA) is routinely used in the field, it presents several limitations. A multiplex PCR can also be used to detect the four species of Plasmodium in salivary glands. The aim of this study was to evaluate the efficacy of a real-time quantitative PCR in detecting and quantifying wild Plasmodium falciparum in the salivary glands of An. gambiae. METHODS: Anopheles gambiae (n=364) were experimentally infected with blood from P. falciparum gametocyte carriers, and P. falciparum in the sporozoite stage were detected in salivary glands by using a real-time quantitative PCR (qPCR) assay. The sensitivity and specificity of this qPCR were compared with the multiplex PCR applied from the Padley method. CSP-ELISA was also performed on carcasses of the same mosquitoes. RESULTS: The prevalence of P. falciparum and the intensity of infection were evaluated using qPCR. This method had a limit of detection of six sporozoites per µL based on standard curves. The number of P. falciparum genomes in the salivary gland samples reached 9,262 parasites/µL (mean: 254.5; 95% CI: 163.5-345.6). The qPCR showed a similar sensitivity (100%) and a high specificity (60%) compared to the multiplex PCR. The agreement between the two methods was "substantial" (κ = 0.63, P <0.05). The number of P. falciparum-positive mosquitoes evaluated with the qPCR (76%), multiplex PCR (59%), and CSP-ELISA (83%) was significantly different (P <0.005). CONCLUSIONS: The qPCR assay can be used to detect P. falciparum in salivary glands of An. gambiae. The qPCR is highly sensitive and is more specific than multiplex PCR, allowing an accurate measure of infective An. gambiae. The results also showed that the CSP-ELISA overestimates the sporozoite rate, detecting sporozoites in the haemolymph in addition to the salivary glands.
Asunto(s)
Anopheles/parasitología , Entomología/métodos , Carga de Parásitos , Parasitología/métodos , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Femenino , Glándulas Salivales/parasitología , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: The Northern part of Senegal is characterized by a low and seasonal transmission of malaria. However, some Plasmodium falciparum infections and malaria clinical cases are reported during the dry season. This study aims to assess the relationship between IgG antibody (Ab) responses to gSG6-P1 mosquito salivary peptide and the prevalence of P. falciparum infection in children during the dry season in the Senegal River Valley. The positive association of the Ab response to gSG6-P1, as biomarker of human exposure to Anopheles vector bite, and P. falciparum infectious status (uninfected, infected-asymptomatic or infected-symptomatic) will allow considering this biomarker as a potential indicator of P. falciparum infection risk during the dry season. METHODS: Microscopic examination of thick blood smears was performed in 371 and 310 children at the start (January) and at the end (June) of the dry season, respectively, in order to assess the prevalence of P. falciparum infection. Collected sera were used to evaluate IgG response to gSG6-P1 by ELISA. Association between parasitological and clinical data (infected-asymptomatic or infected-symptomatic) and the anti-gSG6-P1 IgG levels were evaluated during this period. RESULTS: The prevalence of P. falciparum infection was very low to moderate according to the studied period and was higher in January (23.5%) compared to June (3.5%). Specific IgG response was also different between uninfected children and asymptomatic carriers of the parasite. Children with P. falciparum infection in the dry season showed higher IgG Ab levels to gSG6-P1 than uninfected children. CONCLUSIONS: The results strengthen the hypothesis that malaria transmission is maintained during the dry season in an area of low and seasonal transmission. The measurement of IgG responses to gSG6-P1 salivary peptide could be a pertinent indicator of human malaria reservoir or infection risk in this particular epidemiological context. This promising immunological marker could be useful for the evaluation of the risk of P. falciparum exposure observed during dry season and, by consequences, could be used for the survey of potential pre-elimination situation.
Asunto(s)
Inmunoglobulina G/sangre , Proteínas de Insectos/inmunología , Malaria Falciparum/epidemiología , Plasmodium falciparum/inmunología , Proteínas y Péptidos Salivales/inmunología , Animales , Biomarcadores , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Lactante , Estudios Longitudinales , Malaria Falciparum/diagnóstico , Masculino , Plasmodium falciparum/aislamiento & purificación , Medición de Riesgo , Estaciones del Año , Senegal/epidemiología , Estudios SeroepidemiológicosRESUMEN
BACKGROUND: Urban malaria can be a serious public health problem in Africa. Human-landing catches of mosquitoes, a standard entomological method to assess human exposure to malaria vector bites, can lack sensitivity in areas where exposure is low. A simple and highly sensitive tool could be a complementary indicator for evaluating malaria exposure in such epidemiological contexts. The human antibody response to the specific Anopheles gSG6-P1 salivary peptide have been described as an adequate tool biomarker for a reliable assessment of human exposure level to Anopheles bites. The aim of this study was to use this biomarker to evaluate the human exposure to Anopheles mosquito bites in urban settings of Dakar (Senegal), one of the largest cities in West Africa, where Anopheles biting rates and malaria transmission are supposed to be low. METHODS: One cross-sectional study concerning 1,010 (505 households) children (n = 505) and adults (n = 505) living in 16 districts of downtown Dakar and its suburbs was performed from October to December 2008. The IgG responses to gSG6-P1 peptide have been assessed and compared to entomological data obtained in or near the same district. RESULTS: Considerable individual variations in anti-gSG6-P1 IgG levels were observed between and within districts. In spite of this individual heterogeneity, the median level of specific IgG and the percentage of immune responders differed significantly between districts. A positive and significant association was observed between the exposure levels to Anopheles gambiae bites, estimated by classical entomological methods, and the median IgG levels or the percentage of immune responders measuring the contact between human populations and Anopheles mosquitoes. Interestingly, immunological parameters seemed to better discriminate the exposure level to Anopheles bites between different exposure groups of districts. CONCLUSIONS: Specific human IgG responses to gSG6-P1 peptide biomarker represent, at the population and individual levels, a credible new alternative tool to assess accurately the heterogeneity of exposure level to Anopheles bites and malaria risk in low urban transmission areas. The development of such biomarker tool would be particularly relevant for mapping and monitoring malaria risk and for measuring the efficiency of vector control strategies in these specific settings.
Asunto(s)
Anopheles/inmunología , Exposición a Riesgos Ambientales , Inmunoglobulina G/sangre , Mordeduras y Picaduras de Insectos/inmunología , Proteínas y Péptidos Salivales/inmunología , Población Urbana , Adulto , Análisis de Varianza , Animales , Formación de Anticuerpos , Niño , Preescolar , Femenino , Humanos , Insectos Vectores/inmunología , Masculino , Senegal , Adulto JovenRESUMEN
BACKGROUND: The rapid worldwide spreading of Aedes aegypti and Aedes albopictus is expanding the risk of arboviral diseases transmission, pointing out the urgent need to improve monitoring and control of mosquito vector populations. Assessment of human-vector contact, currently estimated by classical entomological methods, is crucial to guide planning and implementation of control measures and evaluate transmission risk. Antibody responses to mosquito genus-specific salivary proteins are emerging as a convenient complementary tool for assessing host exposure to vectors. We previously showed that IgG responses to the Ae. albopictus 34k2 salivary protein (al34k2) allow detection of seasonal and geographic variation of human exposure to the tiger mosquito in two temperate areas of Northeast Italy. The main aim of this study was to confirm and extend these promising findings to tropical areas with ongoing arboviral transmission. METHODS: IgG responses to al34k2 and to the Ae. aegypti orthologous protein ae34k2 were measured by ELISA in cohorts of subjects only exposed to Ae. albopictus (Réunion Island), only exposed to Ae. aegypti (Bolivia) or unexposed to both these vectors (North of France). RESULTS AND CONCLUSION: Anti-al34k2 IgG levels were significantly higher in sera of individuals from Réunion Island than in unexposed controls, indicating that al34k2 may be a convenient and reliable proxy for whole saliva or salivary gland extracts as an indicator of human exposure to Ae. albopictus. Bolivian subjects, exposed to bites of Ae. aegypti, carried in their sera IgG recognizing the Ae. albopictus al34k2 protein, suggesting that this salivary antigen can also detect, even though with low sensitivity, human exposure to Ae. aegypti. On the contrary, due to the high background observed in unexposed controls, the recombinant ae34k2 appeared not suitable for the evaluation of human exposure to Aedes mosquitoes. Overall, this study confirmed the suitability of anti-al34k2 IgG responses as a specific biomarker of human exposure to Ae. albopictus and, to a certain extent, to Ae. aegypti. Immunoassays based on al34k2 are expected to be especially effective in areas where Ae. albopictus is the main arboviral vector but may also be useful in areas where Ae. albopictus and Ae. aegypti coexist.
Asunto(s)
Aedes , Arbovirus , Aedes/fisiología , Animales , Biomarcadores , Bolivia , Humanos , Inmunoglobulina G , Proteínas de Insectos/genética , Mosquitos Vectores , Reunión , Proteínas y Péptidos SalivalesRESUMEN
After intensive control efforts, human African trypanosomiasis (HAT) was declared eliminated in Côte d'Ivoire as a public health problem in December 2020 and the current objective is to achieve the interruption of the transmission (zero cases). Reaching this objective could be hindered by the existence of an animal reservoir of Trypanosoma (T.) brucei (b.) gambiense. In the framework of a study led in 2013 to assess the role of domestic animals in the epidemiology of HAT in the two last active foci from Côte d'Ivoire (Bonon and Sinfra), plasmas were sampled from four species of domestic animals for parasitological (microscopic examination by the buffy coat technique (BCT)), serological (immune trypanolysis (TL)) and molecular (specific PCR: TBR for T. brucei s.l., TCF for T. congolense forest type, TVW for T. vivax and PCR for T. b. gambiense) testing. In order to improve the understanding of the involvement/role of these animals in the transmission of T. b. gambiense, we have quantified in this study the IgG response to whole saliva extracts of Glossina palpalis gambiensis in order to perform an association analysis between anti-saliva responses and the positivity of diagnostic tests. Cattle and pigs had significantly higher rates of anti-tsetse saliva responses compared to goats and sheep (p < 0.01). In addition, the anti-tsetse saliva responses were strongly associated with the parasitology (BCT+), serology (TL+) and PCR (TBR+ and TCF+) results (p < 0.001). These associations indicate a high level of contacts between the positive/infected animals and tsetse flies. Our findings suggest that protecting cattle and pigs against tsetse bites could have a significant impact in reducing transmission of both animal and human trypanosome species, and advocates for a "One health" approach to better control African trypanosomosis in Côte d'Ivoire.
Asunto(s)
Enfermedades de los Bovinos , Enfermedades de las Ovejas , Enfermedades de los Porcinos , Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Animales Domésticos , Formación de Anticuerpos , Bovinos , Enfermedades de los Bovinos/parasitología , Côte d'Ivoire/epidemiología , Humanos , Ovinos , Porcinos , Enfermedades de los Porcinos/parasitología , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/veterinaria , Moscas Tse-Tse/parasitologíaRESUMEN
Hybrid systems associating the sharpness of anatomic images coming from computed tomography (CT) and radionuclide functional imaging (SPET or PET) are opening a new era in oncology. This multimodal imaging method is now routinely used for the diagnosis, extent, follow up, treatment response and detection of occult disease in different types of malignancies with a significant impact on the treatment strategy leading for a change for more than 68% of all investigated patients.
Asunto(s)
Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , Adulto , Anciano , Fluorodesoxiglucosa F18 , Humanos , Persona de Mediana Edad , Tumores Neuroendocrinos/diagnóstico por imagen , Radiofármacos , Sensibilidad y Especificidad , Neoplasias de la Tiroides/diagnóstico por imagenRESUMEN
BACKGROUND: Aedes mosquitoes are vectors for several major arboviruses of public health concern including dengue viruses. The relationships between Aedes infestation and disease transmission are complex wherein the epidemiological dynamics can be difficult to discern because of a lack of robust and sensitive indicators for predicting transmission risk. This study investigates the use of anti-Aedes saliva antibodies as a serological biomarker for Aedes mosquito bites to assess small scale variations in adult Aedes density and dengue virus (DENV) transmission risk in northeastern Thailand. Individual characteristics, behaviors/occupation and socio-demographics, climatic and epidemiological risk factors associated with human-mosquito exposure are also addressed. METHODS: The study was conducted within a randomized clustered control trial in Roi Et and Khon Kaen provinces over a consecutive 19 months period. Thirty-six (36) clusters were selected, each of ten houses. Serological and entomological surveys were conducted in all houses every four months and monthly in three sentinel households per cluster between September 2017 and April 2019 for blood spot collections and recording concurrent immature and adult Aedes indices. Additionally, the human exposure to Aedes mosquito bites (i.e., Mosquito Exposure Index or MEI) was estimated by ELISA measuring levels of human antibody response to the specific Nterm-34 kDa salivary antigen. The relationships between the MEI, vector infestation indices (adult and immature stages) and vector DENV infection were evaluated using a two-level (house and individual levels) mixed model analysis with one-month lag autoregressive correlation. RESULTS: There was a strong positive relationship between the MEI and adult Aedes (indoor and outdoor) density. Individuals from households with a medium mosquito density (mean difference: 0.091, p<0.001) and households with a high mosquito density (mean difference: 0.131, p<0.001) had higher MEI's compared to individuals from households without Aedes. On a similar trend, individuals from households with a low, medium or high indoor Aedes densities (mean difference: 0.021, p<0.007, 0.053, p<0.0001 and 0.037, p<0.0001 for low, medium and high levels of infestation, respectively) had higher MEI than individuals from houses without indoor Aedes. The MEI was driven by individual characteristics, such as gender, age and occupation/behaviors, and varied according to climatic, seasonal factors and vector control intervention (p<0.05). Nevertheless, the study did not demonstrate a clear correlation between MEI and the presence of DENV-infected Aedes. CONCLUSION: This study represents an important step toward the validation of the specific IgG response to the Aedes salivary peptide Nterm-34kDa as a proxy measure for Aedes infestation levels and human-mosquito exposure risk in a dengue endemic setting. The use of the IgG response to the Nterm-34 kDa peptide as a viable diagnostic tool for estimating dengue transmission requires further investigations and validation in other geographical and transmission settings.
Asunto(s)
Aedes/fisiología , Aedes/virología , Mordeduras y Picaduras de Insectos/epidemiología , Aedes/crecimiento & desarrollo , Animales , Biomarcadores/sangre , Dengue/epidemiología , Dengue/transmisión , Virus del Dengue/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/análisis , Mordeduras y Picaduras de Insectos/inmunología , Masculino , Mosquitos Vectores/virología , Saliva/inmunología , Tailandia/epidemiologíaRESUMEN
BACKGROUND: Culex mosquitoes are vectors for a variety of pathogens of public health concern. New indicators of exposure to Culex bites are needed to evaluate the risk of transmission of associated pathogens and to assess the efficacy of vector control strategies. An alternative to entomological indices is the serological measure of antibodies specific to mosquito salivary antigens. This study investigated whether the human IgG response to both the salivary gland extract and the 30 kDa salivary protein of Culex quinquefasciatus may represent a proxy of human exposure to Culex bites. METHODOLOGY/PRINCIPAL FINDINGS: A multidisciplinary survey was conducted with children aged 1 to 14 years living in neighborhoods with varying exposure to Culex quinquefasciatus in the city of Bouaké, Côte d'Ivoire. Children living in sites with high exposure to Cx quinquefasciatus had a significantly higher IgG response to both salivary antigens compared with children living in the control site where only very few Culex were recorded. Moreover, children from any Culex-high exposed sites had significantly higher IgG responses only to the salivary gland extract compared with children from the control village, whereas no difference was noted in the anti-30 kDa IgG response. No significant differences were noted in the specific IgG responses between age and gender. Sites and the use of a bed net were associated with the level of IgG response to the salivary gland extract and to the 30 kDa antigen, respectively. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the IgG response to Culex salivary gland extracts is suitable as proxy of exposure; however, the specificity to the Culex genus needs further investigation. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other specific antibody responses might be more relevant as a biomarker of exposure. These epidemiological observations may form a starting point for additional work on developing serological biomarkers of Culex exposure.
Asunto(s)
Biomarcadores/sangre , Culex/inmunología , Inmunoglobulina G/sangre , Mordeduras y Picaduras de Insectos/sangre , Proteínas y Péptidos Salivales/inmunología , Adolescente , Animales , Niño , Preescolar , Côte d'Ivoire , Culex/fisiología , Femenino , Humanos , Lactante , Mordeduras y Picaduras de Insectos/parasitología , Masculino , Proyectos Piloto , Glándulas Salivales/inmunologíaRESUMEN
Humoral immunity to Plasmodium falciparum is acquired after repeated infections, and can lead to clinical protection. This study aimed to evaluate how human-, parasite-, and environment-related determinants can modulate the dynamics of IgG responses to Plasmodium falciparum after an infection. Individuals (n = 68, average age = 8.2 years) with uncomplicated malaria were treated with ACT and followed up for 42 days. IgG responses to P. falciparum merozoite antigens (PfMSP1, PfMSP3, PfAMA1, PfGLURP-R0), to whole schizont extract (PfSchz), and to Anopheles gSG6-P1 and Aedes Nterm-34 kDa salivary peptides were measured. Regression analyses were used to identify factors that influence the dynamics of IgG response to P. falciparum antigen between D0 and D42, including demographic and biological factors and the level of exposure to mosquito bites. The dynamics of IgG response to P. falciparum differed according to the antigen. According to multivariate analysis, IgG responses to PfSchz and to PfGLURP-R0 appear to be affected by exposure to Aedes saliva and are associated with age, parasite density, and anti-Plasmodium pre-existing immune response at study inclusion. The present work shows that human exposure to Aedes saliva may contribute, in addition to other factors, to the regulation of anti-Plasmodium immune responses during a natural infection.
RESUMEN
SUMMARY OBJECTIVE: The development of a biomarker of exposure based on the evaluation of the human antibody response specific to Anopheles salivary proteins seems promising in improving malaria control. The IgG response specific to the gSG6-P1 peptide has already been validated as a biomarker of An. gambiae exposure. This study represents a first attempt to validate the gSG6-P1 peptide as an epidemiological tool evaluating exposure to An. funestus bites, the second main malaria vector in sub-Saharan Africa. METHODS: A multi-disciplinary survey was performed in a Senegalese village where An. funestus represents the principal anopheline species. The IgG antibody level specific to gSG6-P1 was evaluated and compared in the same children before, at the peak and after the rainy season. RESULTS: Two-thirds of the children developed a specific IgG response to gSG6-P1 during the study period and--more interestingly--before the rainy season, when An. funestus was the only anopheline species reported. The specific IgG response increased during the An. funestus exposure season, and a positive association between the IgG level and the level of exposure to An. funestus bites was observed. CONCLUSIONS: The results suggest that the evaluation of the IgG response specific to gSG6-P1 in children could also represent a biomarker of exposure to An. funestus bites. The availability of such a biomarker evaluating the exposure to both main Plasmodium falciparum vectors in Africa could be particularly relevant as a direct criterion for the evaluation of the efficacy of vector control strategies.
Asunto(s)
Anopheles/inmunología , Inmunoglobulina G/sangre , Mordeduras y Picaduras de Insectos/inmunología , Proteínas de Insectos/inmunología , Proteínas y Péptidos Salivales/inmunología , Animales , Biomarcadores/sangre , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Mordeduras y Picaduras de Insectos/diagnóstico , Estudios Longitudinales , Masculino , SenegalRESUMEN
BACKGROUND: Assessment exposure and immunity to malaria is an important step in the fight against the disease. Increased malaria infection in non-immune travellers under anti-malarial chemoprophylaxis, as well as the implementation of malaria elimination programmes in endemic countries, raises new issues that pertain to these processes. Notably, monitoring malaria immunity has become more difficult in individuals showing low antibody (Ab) responses or taking medications against the Plasmodium falciparum blood stages. Commonly available techniques in malaria seroepidemiology have limited sensitivity, both against pre-erythrocytic, as against blood stages of the parasite. Thus, the aim of this study was to develop a sensitive tool to assess the exposure to malaria or to bites from the vector Anopheles gambiae, despite anti-malarial prophylactic treatment. METHODS: Ab responses to 13 pre-erythrocytic P. falciparum-specific peptides derived from the proteins Lsa1, Lsa3, Glurp, Salsa, Trap, Starp, CSP and Pf11.1, and to 2 peptides specific for the Anopheles gambiae saliva protein gSG6 were tested. In this study, 253 individuals from three Senegalese areas with different transmission intensities and 124 European travellers exposed to malaria during a short period of time were included. RESULTS: The multiplex assay was optimized for most but not all of the antigens. It was rapid, reproducible and required a small volume of serum. Proportions of Ab-positive individuals, Ab levels and the mean number of antigens (Ags) recognized by each individual increased significantly with increases in the level of malaria exposure. CONCLUSION: The multiplex assay developed here provides a useful tool to evaluate immune responses to multiple Ags in large populations, even when only small amounts of serum are available, or Ab titres are low, as in case of travellers. Finally, the relationship of Ab responses with malaria endemicity levels provides a way to monitor exposure in differentially exposed autochthonous individuals from various endemicity areas, as well as in travellers who are not immune, thus indirectly assessing the parasite transmission and malaria risk in the new eradication era.
Asunto(s)
Anopheles/inmunología , Anticuerpos/sangre , Mordeduras y Picaduras de Insectos/diagnóstico , Malaria/diagnóstico , Parasitología/métodos , Plasmodium falciparum/inmunología , Adulto , Animales , Europa (Continente) , Humanos , Inmunoensayo/métodos , Reproducibilidad de los Resultados , Saliva/inmunología , Senegal , Sensibilidad y Especificidad , Factores de TiempoRESUMEN
Mosquito-borne diseases such as dengue fever, chikungunya or malaria affect millions of people each year and control solutions are urgently needed. An international research program is currently being developed that relies on the introduction of the bacterial endosymbiont Wolbachia pipientis into Aedes aegypti to control dengue transmission. In order to prepare for open-field testing releases of Wolbachia-infected mosquitoes, an intensive social research and community engagement program was undertaken in Cairns, Northern Australia. The most common concern expressed by the diverse range of community members and stakeholders surveyed was the necessity of assuring the safety of the proposed approach for humans, animals and the environment. To address these concerns a series of safety experiments were undertaken. We report in this paper on the experimental data obtained, discuss the limitations of experimental risk assessment and focus on the necessity of including community concerns in scientific research.
Asunto(s)
Aedes/microbiología , Interacciones Huésped-Parásitos/fisiología , Insectos Vectores/microbiología , Control Biológico de Vectores/métodos , Wolbachia/fisiología , Animales , Dengue/prevención & control , Dengue/transmisión , Virus del Dengue/fisiología , Humanos , Simbiosis/fisiologíaRESUMEN
A patient enrolled in a clinical trial (NCT02802969) with suspicion of chordoma underwent an [F]FAZA PET/CT, a radiolabeled nitroimidazole analog of hypoxia PET imaging. The patient's images showed a different tumor profile compared to those observed in other hypoxic or nonhypoxic chordoma patients. The motivation for using [F]FAZA pharmacokinetic imaging was to compare this profile with histologically confirmed cases of chordoma. Through visual imaging and quantification of blood and tumor time-activity curves, we excluded the hypothesis that it was a chordoma, diagnosing a paraganglioma.