Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Mol Cell ; 83(8): 1251-1263.e6, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36996811

RESUMEN

Nucleosomes drastically limit transcription factor (TF) occupancy, while pioneer transcription factors (PFs) somehow circumvent this nucleosome barrier. In this study, we compare nucleosome binding of two conserved S. cerevisiae basic helix-loop-helix (bHLH) TFs, Cbf1 and Pho4. A cryo-EM structure of Cbf1 in complex with the nucleosome reveals that the Cbf1 HLH region can electrostatically interact with exposed histone residues within a partially unwrapped nucleosome. Single-molecule fluorescence studies show that the Cbf1 HLH region facilitates efficient nucleosome invasion by slowing its dissociation rate relative to DNA through interactions with histones, whereas the Pho4 HLH region does not. In vivo studies show that this enhanced binding provided by the Cbf1 HLH region enables nucleosome invasion and ensuing repositioning. These structural, single-molecule, and in vivo studies reveal the mechanistic basis of dissociation rate compensation by PFs and how this translates to facilitating chromatin opening inside cells.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Nucleosomas/genética , Nucleosomas/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética
2.
Nucleic Acids Res ; 51(3): 1139-1153, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36688297

RESUMEN

Transcription factors (TF) require access to target sites within nucleosomes to initiate transcription. The target site position within the nucleosome significantly influences TF occupancy, but how is not quantitatively understood. Using ensemble and single-molecule fluorescence measurements, we investigated the targeting and occupancy of the transcription factor, Gal4, at different positions within the nucleosome. We observe a dramatic decrease in TF occupancy to sites extending past 30 base pairs (bp) into the nucleosome which cannot be explained by changes in the TF dissociation rate or binding site orientation. Instead, the nucleosome unwrapping free energy landscape is the primary determinant of Gal4 occupancy by reducing the Gal4 binding rate. The unwrapping free energy landscape defines two distinct regions of accessibility and kinetics with a boundary at 30 bp into the nucleosome where the inner region is over 100-fold less accessible. The Gal4 binding rate in the inner region no longer depends on its concentration because it is limited by the nucleosome unwrapping rate, while the frequency of nucleosome rewrapping decreases because Gal4 exchanges multiple times before the nucleosome rewraps. Our findings highlight the importance of the nucleosome unwrapping free energy landscape on TF occupancy and dynamics that ultimately influences transcription initiation.


Asunto(s)
Nucleosomas , Factores de Transcripción , Factores de Transcripción/metabolismo , ADN/química , Regulación de la Expresión Génica , Sitios de Unión
3.
Nano Lett ; 24(10): 3097-3103, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417053

RESUMEN

To date, studies on the thermodynamic and kinetic processes that underlie biological function and nanomachine actuation in biological- and biology-inspired molecular constructs have primarily focused on photothermal heating of ensemble systems, highlighting the need for probes that are localized within the molecular construct and capable of resolving single-molecule response. Here we present an experimental demonstration of wavelength-selective, localized heating at the single-molecule level using the surface plasmon resonance of a 15 nm gold nanoparticle (AuNP). Our approach is compatible with force-spectroscopy measurements and can be applied to studies of the single-molecule thermodynamic properties of DNA origami nanomachines as well as biomolecular complexes. We further demonstrate wavelength selectivity and establish the temperature dependence of the reaction coordinate for base-pair disruption in the shear-rupture geometry, demonstrating the utility and flexibility of this approach for both fundamental studies of local (nanometer-scale) temperature gradients and rapid and multiplexed nanomachine actuation.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Pinzas Ópticas , Calefacción , Nanopartículas del Metal/química , ADN/química
4.
J Am Chem Soc ; 145(46): 25478-25485, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37943892

RESUMEN

The fundamental repeat unit of chromatin, the nucleosome, consists of approximately 147 base pairs of double-stranded DNA and a histone protein octamer containing two copies each of histones H2A, H2B, H3, and H4. Each histone possesses a dynamically disordered N-terminal tail domain, and it is well-established that the tails of histones H3 and H4 play key roles in chromatin compaction and regulation. Here we investigate the conformational ensemble and interactions of the H4 tail in nucleosomes by means of solution NMR measurements of paramagnetic relaxation enhancements (PREs) in recombinant samples reconstituted with 15N-enriched H4 and nitroxide spin-label tagged H3. The experimental PREs, which report on the proximities of individual H4 tail residues to the different H3 spin-label sites, are interpreted by using microsecond time-scale molecular dynamics simulations of the nucleosome core particle. Collectively, these data enable improved localization of histone H4 tails in nucleosomes and support the notion that H4 tails engage in a fuzzy complex interaction with nucleosomal DNA.


Asunto(s)
Histonas , Nucleosomas , Histonas/química , Cromatina , ADN/química , Conformación de Ácido Nucleico , Espectroscopía de Resonancia Magnética
5.
EMBO J ; 38(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101674

RESUMEN

Transcription factors show rapid and reversible binding to chromatin in living cells, and transcription occurs in sporadic bursts, but how these phenomena are related is unknown. Using a combination of in vitro and in vivo single-molecule imaging approaches, we directly correlated binding of the Gal4 transcription factor with the transcriptional bursting kinetics of the Gal4 target genes GAL3 and GAL10 in living yeast cells. We find that Gal4 dwell time sets the transcriptional burst size. Gal4 dwell time depends on the affinity of the binding site and is reduced by orders of magnitude by nucleosomes. Using a novel imaging platform called orbital tracking, we simultaneously tracked transcription factor binding and transcription at one locus, revealing the timing and correlation between Gal4 binding and transcription. Collectively, our data support a model in which multiple RNA polymerases initiate transcription during one burst as long as the transcription factor is bound to DNA, and bursts terminate upon transcription factor dissociation.


Asunto(s)
Nucleosomas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Sitios de Unión , Metabolismo de los Hidratos de Carbono/genética , Galactoquinasa/genética , Galactoquinasa/metabolismo , Galactosa/metabolismo , Regulación Fúngica de la Expresión Génica , Imagen Molecular/métodos , Organismos Modificados Genéticamente , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual/métodos , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Activación Transcripcional/genética
6.
J Virol ; 96(18): e0101122, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36094316

RESUMEN

HIV-1 DNA is preferentially integrated into chromosomal hot spots by the preintegration complex (PIC). To understand the mechanism, we measured the DNA integration activity of PICs-extracted from infected cells-and intasomes, biochemically assembled PIC substructures using a number of relevant target substrates. We observed that PIC-mediated integration into human chromatin is preferred compared to genomic DNA. Surprisingly, nucleosomes lacking histone modifications were not preferred integration compared to the analogous naked DNA. Nucleosomes containing the trimethylated histone 3 lysine 36 (H3K36me3), an epigenetic mark linked to active transcription, significantly stimulated integration, but the levels remained lower than the naked DNA. Notably, H3K36me3-modified nucleosomes with linker DNA optimally supported integration mediated by the PIC but not by the intasome. Interestingly, optimal intasome-mediated integration required the cellular cofactor LEDGF. Unexpectedly, LEDGF minimally affected PIC-mediated integration into naked DNA but blocked integration into nucleosomes. The block for the PIC-mediated integration was significantly relieved by H3K36me3 modification. Mapping the integration sites in the preferred substrates revealed that specific features of the nucleosome-bound DNA are preferred for integration, whereas integration into naked DNA was random. Finally, biochemical and genetic studies demonstrate that DNA condensation by the H1 protein dramatically reduces integration, providing further evidence that features inherent to the open chromatin are preferred for HIV-1 integration. Collectively, these results identify the optimal target substrate for HIV-1 integration, report a mechanistic link between H3K36me3 and integration preference, and importantly, reveal distinct mechanisms utilized by the PIC for integration compared to the intasomes. IMPORTANCE HIV-1 infection is dependent on integration of the viral DNA into the host chromosomes. The preintegration complex (PIC) containing the viral DNA, the virally encoded integrase (IN) enzyme, and other viral/host factors carries out HIV-1 integration. HIV-1 integration is not dependent on the target DNA sequence, and yet the viral DNA is selectively inserted into specific "hot spots" of human chromosomes. A growing body of literature indicates that structural features of the human chromatin are important for integration targeting. However, the mechanisms that guide the PIC and enable insertion of the PIC-associated viral DNA into specific hot spots of the human chromosomes are not fully understood. In this study, we describe a biochemical mechanism for the preference of the HIV-1 DNA integration into open chromatin. Furthermore, our study defines a direct role for the histone epigenetic mark H3K36me3 in HIV-1 integration preference and identify an optimal substrate for HIV-1 PIC-mediated viral DNA integration.


Asunto(s)
Cromosomas Humanos , VIH-1 , Código de Histonas , Histonas , Nucleosomas , Integración Viral , Cromatina/metabolismo , Cromosomas Humanos/virología , ADN Viral/genética , ADN Viral/metabolismo , Infecciones por VIH/virología , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , VIH-1/genética , Histonas/química , Histonas/metabolismo , Humanos , Lisina/genética , Metilación , Nucleosomas/genética , Nucleosomas/metabolismo , Nucleosomas/virología , Integración Viral/genética
7.
Nucleic Acids Res ; 49(8): 4750-4767, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33856458

RESUMEN

Hexasomes and tetrasomes are intermediates in nucleosome assembly and disassembly. Their formation is promoted by histone chaperones, ATP-dependent remodelers, and RNA polymerase II. In addition, hexasomes are maintained in transcribed genes and could be an important regulatory factor. While nucleosome composition has been shown to affect the structure and accessibility of DNA, its influence on histone tails is largely unknown. Here, we investigate the conformational dynamics of the H3 tail in the hexasome and tetrasome. Using a combination of NMR spectroscopy, MD simulations, and trypsin proteolysis, we find that the conformational ensemble of the H3 tail is regulated by nucleosome composition. As has been found for the nucleosome, the H3 tails bind robustly to DNA within the hexasome and tetrasome, but upon loss of the H2A/H2B dimer, we determined that the adjacent H3 tail has an altered conformational ensemble, increase in dynamics, and increase in accessibility. Similar to observations of DNA dynamics, this is seen to be asymmetric in the hexasome. Our results indicate that nucleosome composition has the potential to regulate chromatin signaling and ultimately help shape the chromatin landscape.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , ADN/química , Histonas/química , Histonas/metabolismo , Conformación de Ácido Nucleico , Nucleosomas/química , Nucleosomas/metabolismo , Dimerización , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Simulación de Dinámica Molecular , Análisis de Componente Principal , Conformación Proteica , Proteolisis , Tripsina/química
8.
Nucleic Acids Res ; 49(16): 9444-9458, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34387688

RESUMEN

The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5' leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250-500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10-20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.


Asunto(s)
Archaea/enzimología , Magnesio/metabolismo , ARN de Archaea/genética , Ribonucleasa P/genética , Conformación de Ácido Nucleico/efectos de los fármacos , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/genética , Precursores del ARN/genética , ARN de Archaea/ultraestructura , ARN Catalítico , Ribonucleasa P/ultraestructura
9.
Nucleic Acids Res ; 49(15): 8987-8999, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34358322

RESUMEN

Single molecule force spectroscopy is a powerful approach to probe the structure, conformational changes, and kinetic properties of biological and synthetic macromolecules. However, common approaches to apply forces to biomolecules require expensive and cumbersome equipment and relatively large probes such as beads or cantilevers, which limits their use for many environments and makes integrating with other methods challenging. Furthermore, existing methods have key limitations such as an inability to apply compressive forces on single molecules. We report a nanoscale DNA force spectrometer (nDFS), which is based on a DNA origami hinge with tunable mechanical and dynamic properties. The angular free energy landscape of the nDFS can be engineered across a wide range through substitution of less than 5% of the strand components. We further incorporate a removable strut that enables reversible toggling of the nDFS between open and closed states to allow for actuated application of tensile and compressive forces. We demonstrate the ability to apply compressive forces by inducing a large bend in a 249bp DNA molecule, and tensile forces by inducing DNA unwrapping of a nucleosome sample. These results establish a versatile tool for force spectroscopy and robust methods for designing nanoscale mechanical devices with tunable force application.


Asunto(s)
ADN/química , Nanoestructuras/química , Bioingeniería , Fenómenos Biomecánicos , Nucleosomas/química , Análisis Espectral
10.
Biochemistry ; 61(8): 625-638, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35377618

RESUMEN

The linker histone H1 is a highly prevalent protein that compacts chromatin and regulates DNA accessibility and transcription. However, the mechanisms behind H1 regulation of transcription factor (TF) binding within nucleosomes are not well understood. Using in vitro fluorescence assays, we positioned fluorophores throughout human H1 and the nucleosome, then monitored the distance changes between H1 and the histone octamer, H1 and nucleosomal DNA, or nucleosomal DNA and the histone octamer to monitor the H1 movement during TF binding. We found that H1 remains bound to the nucleosome dyad, while the C terminal domain (CTD) releases the linker DNA during nucleosome partial unwrapping and TF binding. In addition, mutational studies revealed that a small 16 amino acid region at the beginning of the H1 CTD is largely responsible for altering nucleosome wrapping and regulating TF binding within nucleosomes. We then investigated physiologically relevant post-translational modifications (PTMs) in human H1 by preparing fully synthetic H1 using convergent hybrid phase native chemical ligation. Both individual PTMs and combinations of phosphorylation and citrullination of H1 had no detectable influence on nucleosome binding and nucleosome wrapping, and had only a minor impact on H1 regulation of TF occupancy within nucleosomes. This suggests that these H1 PTMs function by other mechanisms. Our results highlight the importance of the H1 CTD, in particular, the first 16 amino acids, in regulating nucleosome linker DNA dynamics and TF binding within the nucleosome.


Asunto(s)
Histonas , Nucleosomas , Cromatina , ADN/química , Histonas/metabolismo , Humanos , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(13): 6111-6119, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850548

RESUMEN

Microrchidia 3 (MORC3) is a human protein linked to autoimmune disorders, Down syndrome, and cancer. It is a member of a newly identified family of human ATPases with an uncharacterized mechanism of action. Here, we elucidate the molecular basis for inhibition and activation of MORC3. The crystal structure of the MORC3 region encompassing the ATPase and CW domains in complex with a nonhydrolyzable ATP analog demonstrates that the two domains are directly coupled. The extensive ATPase:CW interface stabilizes the protein fold but inhibits the catalytic activity of MORC3. Enzymatic, NMR, mutational, and biochemical analyses show that in the autoinhibited, off state, the CW domain sterically impedes binding of the ATPase domain to DNA, which in turn is required for the catalytic activity. MORC3 autoinhibition is released by disrupting the intramolecular ATPase:CW coupling through the competitive interaction of CW with histone H3 tail or by mutating the interfacial residues. Binding of CW to H3 leads to a marked rearrangement in the ATPase-CW cassette, which frees the DNA-binding site in active MORC3 (on state). We show that ATP-induced dimerization of the ATPase domain is strictly required for the catalytic activity and that the dimeric form of ATPase-CW might cooperatively bind to dsDNA. Together, our findings uncovered a mechanism underlying the fine-tuned regulation of the catalytic domain of MORC3 by the epigenetic reader, CW.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/aislamiento & purificación , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Activación Enzimática , Polarización de Fluorescencia , Histonas/metabolismo , Humanos , Espectroscopía de Resonancia Magnética
12.
Nucleic Acids Res ; 47(11): 5617-5633, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31216039

RESUMEN

Nucleosomes, the fundamental organizing units of eukaryotic genomes, contain ∼146 base pairs of DNA wrapped around a histone H3-H4 tetramer and two histone H2A-H2B dimers. Converting nucleosomes into hexasomes by removal of a H2A-H2B dimer is an important regulatory event, but its regulation and functional consequences are not well-understood. To investigate the influence of hexasomes on DNA accessibility, we used the property of the Widom-601 Nucleosome Positioning Sequence (NPS) to form homogeneously oriented hexasomes in vitro. We find that DNA accessibility to transcription factors (TF) on the hexasome H2A-H2B distal side is identical to naked DNA, while the accessibility on the H2A-H2B proximal side is reduced by 2-fold, which is due to a 2-fold reduction in hexasome unwrapping probability. We then determined that a 23 bp region of the Widom-601 NPS is responsible for forming homogeneously oriented hexasomes. Analysis of published ChIP-exo data of hexasome containing genes identified two DNA sequence motifs that correlate with hexasome orientation in vivo, while ExoIII mapping studies of these sequences revealed they generate homogeneously oriented hexasomes in vitro. These results indicate that hexasome orientation, which is influenced by the underlying DNA sequence in vivo, is important for modulating DNA accessibility to regulate transcription.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/química , ADN/química , Histonas/química , Nucleosomas/química , Factores de Transcripción/química , ADN/genética , Regulación de la Expresión Génica , Nucleosomas/genética , Unión Proteica , Multimerización de Proteína , Transcripción Genética
13.
Angew Chem Int Ed Engl ; 60(12): 6480-6487, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33522067

RESUMEN

The interaction of positively charged N-terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post-translational modifications and recognition by chromatin-binding proteins. Here, we report residue-specific 15 N NMR relaxation rates for histone H4 tails in reconstituted nucleosomes. These data indicate that H4 tails are strongly dynamically disordered, albeit with reduced conformational flexibility compared to a free peptide with the same sequence. Remarkably, the NMR observables were successfully reproduced in a 2-µs MD trajectory of the nucleosome. This is an important step toward resolving an apparent inconsistency where prior simulations were generally at odds with experimental evidence on conformational dynamics of histone tails. Our findings indicate that histone H4 tails engage in a fuzzy interaction with nucleosomal DNA, underpinned by a variable pattern of short-lived salt bridges and hydrogen bonds, which persists at low ionic strength (0-100 mM NaCl).


Asunto(s)
ADN/química , Histonas/química , Nucleosomas/química
14.
Biophys J ; 117(11): 2204-2216, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31732143

RESUMEN

In eukaryotic cells, DNA is packaged into chromatin where nucleosomes are the basic packaging unit. Important cellular processes including gene expression, DNA replication, and DNA repair require nucleosomal DNA to be unwrapped so that functional proteins can access their target sites, which otherwise are sterically occluded. A key question in this process is what the unwrapped conformations individual nucleosomes adopt within chromatin are. Here, we develop a concurrent nucleosome unwrapping model to address this question. We hypothesize that for a given end-to-end distance of the nucleosomal DNA, the nucleosomal DNA stochastically unwraps from the histone core from both ends independently and that this combination of unwrapping from both sides results in a significant increase in the average distance between the DNA extending from both sides of the nucleosomes. We test our model on recently published experiments using a DNA origami nanocaliper that quantifies nucleosome unwrapping and achieve good agreement between experiment and model prediction. We then investigate the DNA origami caliper distribution when attached to a hexasome (a nucleosome lacking an H2A/H2B dimer). A significant shift in the caliper angle distribution caused by the asymmetric structural features of the hexasome seen experimentally is consistent with the model. Our modeling approach may be more broadly useful to the interpretation of other studies of nucleosome dynamics, chromatin dynamics, and regulatory processes involving nucleosome unwrapping, as well as more generally to optimization of future DNA origami designs to probe mechanical properties of biomolecules.


Asunto(s)
Modelos Moleculares , Nucleosomas/química , Nucleosomas/metabolismo , Secuencia de Bases , ADN/química , ADN/genética , ADN/metabolismo , Nanoestructuras/química , Termodinámica
15.
Nucleic Acids Res ; 45(7): 3767-3776, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28082396

RESUMEN

The Tudor domain of human PHF1 recognizes trimethylated lysine 36 on histone H3 (H3K36me3). PHF1 relies on this interaction to regulate PRC2 methyltransferase activity, localize to DNA double strand breaks and mediate nucleosome accessibility. Here, we investigate the impact of the PHF1 N-terminal domain (NTD) on the Tudor domain interaction with the nucleosome. We show that the NTD is partially ordered when it is natively attached to the Tudor domain. Through a combination of FRET and single molecule studies, we find that the increase of DNA accessibility within the H3K36me3-containing nucleosome, instigated by the Tudor binding to H3K36me3, is dramatically enhanced by the NTD. We demonstrate that this nearly order of magnitude increase is due to preferential binding of PHF1 to partially unwrapped nucleosomes, and that PHF1 alters DNA-protein binding within the nucleosome by decreasing dissociation rates. These results highlight the potency of a PTM-binding protein to regulate DNA accessibility and underscores the role of the novel mechanism by which nucleosomes control DNA-protein binding through increasing protein dissociation rates.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Proteínas del Grupo Polycomb/química , Proteínas del Grupo Polycomb/metabolismo , ADN/metabolismo , Histonas/metabolismo , Humanos , Nucleosomas/química , Unión Proteica , Dominios Proteicos , Dominio Tudor
16.
J Am Chem Soc ; 140(30): 9478-9485, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29991262

RESUMEN

A range of acyl-lysine (acyl-Lys) modifications on histones and other proteins have been mapped over the past decade but for most, their functional and structural significance remains poorly characterized. One limitation in the study of acyl-Lys containing proteins is the challenge of producing them or their mimics in site-specifically modified forms. We describe a cysteine alkylation-based method to install hydrazide mimics of acyl-Lys post-translational modifications (PTMs) on proteins. We have applied this method to install mimics of acetyl-Lys, 2-hydroxyisobutyryl-Lys, and ubiquityl-Lys that could be recognized selectively by relevant acyl-Lys modification antibodies. The acyl-Lys modified histone H3 proteins were reconstituted into nucleosomes to study nucleosome dynamics and stability as a function of modification type and site. We also installed a ubiquityl-Lys mimic in histone H2B and generated a diubiquitin analog, both of which could be cleaved by deubiquitinating enzymes. Nucleosomes containing the H2B ubiquityl-Lys mimic were used to study the SAGA deubiquitinating module's molecular recognition. These results suggest that acyl-Lys mimics offer a relatively simple and promising strategy to study the role of acyl-Lys modifications in the function, structure, and regulation of proteins and protein complexes.


Asunto(s)
Histonas/química , Hidrazinas/química , Ubiquitina/química , Alquilación , Animales , Anticuerpos/inmunología , Biomimética/métodos , Cisteína/química , Cisteína Endopeptidasas/química , Enzimas Desubicuitinizantes , Endopeptidasas/química , Escherichia coli/genética , Histonas/síntesis química , Histonas/inmunología , Histonas/aislamiento & purificación , Humanos , Hidrazinas/síntesis química , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleosomas/química , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/síntesis química , Ubiquitina/inmunología , Ubiquitina/aislamiento & purificación , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/genética , Xenopus laevis
17.
Nucleic Acids Res ; 44(1): 472-84, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26626149

RESUMEN

BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Cromatina/genética , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN , Histonas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Proteínas Nucleares/genética , Nucleosomas/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Alineación de Secuencia
18.
Mol Cell ; 36(6): 1086-94, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-20064472

RESUMEN

DNA nucleotide mismatches and lesions arise on chromosomes that are a complex assortment of protein and DNA (chromatin). The fundamental unit of chromatin is a nucleosome that contains approximately 146 bp DNA wrapped around an H2A, H2B, H3, and H4 histone octamer. We demonstrate that the mismatch recognition heterodimer hMSH2-hMSH6 disassembles a nucleosome. Disassembly requires a mismatch that provokes the formation of hMSH2-hMSH6 hydrolysis-independent sliding clamps, which translocate along the DNA to the nucleosome. The rate of disassembly is enhanced by actual or mimicked acetylation of histone H3 within the nucleosome entry-exit and dyad axis that occurs during replication and repair in vivo and reduces DNA-octamer affinity in vitro. Our results support a passive mechanism for chromatin remodeling whereby hMSH2-hMSH6 sliding clamps trap localized fluctuations in nucleosome positioning and/or wrapping that ultimately leads to disassembly, and highlight unanticipated strengths of the Molecular Switch Model for mismatch repair (MMR).


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Nucleosomas/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Disparidad de Par Base , ADN/metabolismo , Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Humanos , Proteína 2 Homóloga a MutS/genética , Xenopus laevis
19.
Biophys J ; 110(9): 2044-52, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166812

RESUMEN

Electron paramagnetic resonance (EPR), an established and powerful methodology for studying atomic-scale biomolecular structure and dynamics, typically requires in excess of 10(12) labeled biomolecules. Single-molecule measurements provide improved insights into heterogeneous behaviors that can be masked in ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. Here, we report EPR measurements of a single labeled biomolecule. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy centers, and optically detect the paramagnetic resonance of nitrogen-vacancy spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic timescale for reorientation of the nanodiamond probe is slow compared with the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond-labeled DNA provides the foundation for the development of single-molecule magnetic resonance studies of complex biomolecular systems.


Asunto(s)
ADN/química , Nanodiamantes/química , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Conformación Molecular
20.
J Biol Chem ; 290(37): 22612-21, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26175159

RESUMEN

Nucleosome unwrapping dynamics provide transient access to the complexes involved in DNA transcription, repair, and replication, whereas regulation of nucleosome unwrapping modulates occupancy of these complexes. Histone H3 is phosphorylated at tyrosine 41 (H3Y41ph) and threonine 45 (H3T45ph). H3Y41ph is implicated in regulating transcription, whereas H3T45ph is involved in DNA replication and apoptosis. These modifications are located in the DNA-histone interface near where the DNA exits the nucleosome, and are thus poised to disrupt DNA-histone interactions. However, the impact of histone phosphorylation on nucleosome unwrapping and accessibility is unknown. We find that the phosphorylation mimics H3Y41E and H3T45E, and the chemically correct modification, H3Y41ph, significantly increase nucleosome unwrapping. This enhances DNA accessibility to protein binding by 3-fold. H3K56 acetylation (H3K56ac) is also located in the same DNA-histone interface and increases DNA unwrapping. H3K56ac is implicated in transcription regulation, suggesting that H3Y41ph and H3K56ac could function together. We find that the combination of H3Y41ph with H3K56ac increases DNA accessibility by over an order of magnitude. These results suggest that phosphorylation within the nucleosome DNA entry-exit region increases access to DNA binding complexes and that the combination of phosphorylation with acetylation has the potential to significantly influence DNA accessibility to transcription regulatory complexes.


Asunto(s)
ADN/química , Histonas/química , Nucleosomas/química , Acetilación , ADN/genética , ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Nucleosomas/genética , Nucleosomas/metabolismo , Fosforilación , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA