Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(8): e23603, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648368

RESUMEN

Recent evidence suggests that chronic exposure to opioid analgesics such as morphine disrupts the intestinal epithelial layer and causes intestinal dysbiosis. Depleting gut bacteria can preclude the development of tolerance to opioid-induced antinociception, suggesting an important role of the gut-brain axis in mediating opioid effects. The mechanism underlying opioid-induced dysbiosis, however, remains unclear. Host-produced antimicrobial peptides (AMPs) are critical for the integrity of the intestinal epithelial barrier as they prevent the pathogenesis of the enteric microbiota. Here, we report that chronic morphine or fentanyl exposure reduces the antimicrobial activity in the ileum, resulting in changes in the composition of bacteria. Fecal samples from morphine-treated mice had increased levels of Akkermansia muciniphila with a shift in the abundance ratio of Firmicutes and Bacteroidetes. Fecal microbial transplant (FMT) from morphine-naïve mice or oral supplementation with butyrate restored (a) the antimicrobial activity, (b) the expression of the antimicrobial peptide, Reg3γ, (c) prevented the increase in intestinal permeability and (d) prevented the development of antinociceptive tolerance in morphine-dependent mice. Improved epithelial barrier function with FMT or butyrate prevented the enrichment of the mucin-degrading A. muciniphila in morphine-dependent mice. These data implicate impairment of the antimicrobial activity of the intestinal epithelium as a mechanism by which opioids disrupt the microbiota-gut-brain axis.


Asunto(s)
Analgésicos Opioides , Disbiosis , Fentanilo , Microbioma Gastrointestinal , Mucosa Intestinal , Ratones Endogámicos C57BL , Morfina , Animales , Morfina/farmacología , Ratones , Disbiosis/inducido químicamente , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Masculino , Fentanilo/farmacología , Analgésicos Opioides/farmacología , Eje Cerebro-Intestino/efectos de los fármacos , Trasplante de Microbiota Fecal , Proteínas Asociadas a Pancreatitis/metabolismo , Akkermansia/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Bacteroidetes/efectos de los fármacos
2.
J Pharmacol Exp Ther ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409113

RESUMEN

While agonists of mu (MOR) and kappa (KOR) opioid receptors have analgesic effects, they produce euphoria and dysphoria, respectively. Other side effects include respiratory depression and addiction for MOR agonists and sedation for KOR agonists. We reported that 17-cyclopropylmethyl-3,14ß-dihydroxy-4,5α-epoxy-6ß-{[4'-(2'-cyanopyridyl)]carboxamido}cmorphinan (NCP) displayed potent KOR full agonist and MOR partial agonist activities (58%) with 6.5x KOR-over-MOR selectivity in vitro Herein, we characterized pharmacological effects of NCP in rodents. In mice, NCP exerted analgesic effects against inflammatory pain in both the formalin test and the acetic acid writhing test, with A50 values of 47.6 and 14.4 microg/kg (s.c.), respectively. The analgesic effects in the acetic acid writhing test were mediated by the KOR. NCP at doses much higher than those effective in reducing inflammatory pain did not produce antinociception in the hot plate and tail flick tests, inhibit compound 48/80-induced scratching, cause conditioned place aversion (CPA) or preference, impair rotarod performance, inhibit locomotor activity, cause respiratory depression, or precipitate morphine withdrawal. However, NCP (10~100 microg/kg) inhibited gastrointestinal transit with a maximum of ~40% inhibition. In MOR knockout mice, NCP caused CPA, demonstrating that its lack of CPA is due to combined actions on the MOR and KOR. Following s.c. injection, NCP penetrated into the mouse brain. In rats trained to self-administer heroin, NCP (1~320 microg/kg/infusion) did not function as a reinforcer. Thus, NCP produces potent analgesic effects via KOR without side effects except constipation. Therefore, dual full KOR/partial MOR agonists with moderate KOR-over-MOR selectivity may be promising as non-addictive analgesics for inflammatory pain. Significance Statement Developing non-addictive analgesics is crucial for reducing opioid overdose deaths, minimizing drug misuse, and promoting safer pain management practices. Herein, pharmacology of a potential non-addictive analgesic, NCP, is reported. NCP has full KOR agonist / partial MOR agonist activities with a 6.5 x selectivity for KOR over MOR. Unlike MOR agonists, analgesic doses of NCP do not lead to self-administration or respiratory depression. Furthermore, NCP does not produce aversion, hypolocomotion, or motor incoordination, side effects typically associated with KOR activation.

3.
Mol Pharmacol ; 103(4): 230-240, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36702548

RESUMEN

Cisplatin is a potent first-line therapy for many solid malignancies, such as breast, ovarian, lung, testicular, and head and neck cancer. However, acute kidney injury (AKI) is a major dose-limiting toxicity in cisplatin therapy, which often hampers the continuation of cisplatin treatment. The endocannabinoid system, consisting of anandamide (AEA) and 2-arachidonoylglycerol and cannabinoid receptors, participates in different kidney diseases. Inhibition of fatty acid amide hydrolase (FAAH), the primary enzyme for the degradation of AEA and AEA-related N-acylethanolamines, elicits anti-inflammatory effects; however, little is known about its role in cisplatin nephrotoxicity. The current study tested the hypothesis that genetic deletion of Faah mitigates cisplatin-induced AKI. Male wild-type C57BL6 (WT) and Faah-/- mice were administered a single dose of intraperitoneal injection of cisplatin (30 mg/kg) and euthanatized 72 hours later. Faah-/- mice showed a reduction of cisplatin-induced blood urea nitrogen, plasma creatinine levels, kidney injury markers, and tubular damage in comparison with WT mice. The renal protection from Faah deletion was associated with enhanced tone of AEA-related N-acylethanolamines (palmitoylethanolamide and oleoylethanolamide), attenuated nuclear factor-κB/p65 activity, DNA damage markers p53 and p21, and decreased expression of the inflammatory cytokine interleukin-1ß, as well as infiltration of macrophages and leukocytes in the kidneys. Notably, a selective FAAH inhibitor (PF-04457845) did not interfere with or perturb the antitumor effects of cisplatin in two head and neck squamous cell carcinoma cell lines, HN30 and HN12. Our work highlights that FAAH inactivation prevents cisplatin-induced nephrotoxicity in mice and that targeting FAAH could provide a novel strategy to mitigate cisplatin-induced nephrotoxicity. SIGNIFICANCE STATEMENT: Mice lacking the Faah gene are protected from cisplatin-induced inflammation, DNA damage response, tubular damage, and kidney dysfunction. Inactivation of FAAH could be a potential strategy to mitigate cisplatin-induced nephrotoxicity.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Animales , Masculino , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/genética , Endocannabinoides/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
4.
J Sep Sci ; 46(22): e2300395, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37688356

RESUMEN

Interest has increased in the role of N-acyl amino acids in a variety of disease states and as potential pharmacotherapies. Recently, N-oleoyl glycine and N-oleoyl alanine have shown promise in reducing the rewarding effects of drugs of abuse and alleviating withdrawal signs in rodent models. Previously published methods for the quantitation of these analytes by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in tissue were part of extensive lipidomic panels which may result in limited sensitivity and selectivity and also reported low recovery. Presented is a method for the extraction and HPLC-MS/MS analysis of N-oleoyl glycine and N-oleoyl alanine. The bias and precision of the assay were determined to be within ± 20%. The method was shown to be reliable and robust, with over 90% recovery for the low-level analytes. Increasing concentrations of N-oleoyl glycine and N-oleoyl alanine were quantitated in mouse brain and plasma following exogenous administration. This method was developed to serve to support studies investigating the pharmacokinetics and involvement of N-oleoyl glycine and N-oleoyl alanine in drug dependence and other diseases.


Asunto(s)
Glicina , Espectrometría de Masas en Tándem , Ratones , Animales , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Glicina/análisis , Alanina , Encéfalo
5.
J Neurosci ; 39(30): 5949-5965, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127001

RESUMEN

Diacylglycerol lipase-α (DAGL-α), the principal biosynthetic enzyme of the endogenous cannabinoid 2-arachidonylglycerol (2-AG) on neurons, plays a key role in CB1 receptor-mediated synaptic plasticity and hippocampal neurogenesis, but its contribution to global hippocampal-mediated processes remains unknown. Thus, the present study examines the role that DAGL-α plays on LTP in hippocampus, as well as in hippocampal-dependent spatial learning and memory tasks, and on the production of endocannabinoid and related lipids through the use of complementary pharmacologic and genetic approaches to disrupt this enzyme in male mice. Here we show that DAGL-α gene deletion or pharmacological inhibition disrupts LTP in CA1 of the hippocampus but elicits varying magnitudes of behavioral learning and memory deficits in mice. In particular, DAGL-α-/- mice display profound impairments in the Object Location assay and Morris Water Maze (MWM) acquisition engaging in nonspatial search strategies. In contrast, WT mice administered the DAGL-α inhibitor DO34 show delays in MWM acquisition and reversal learning, but no deficits in expression, extinction, forgetting, or perseveration processes in this task, as well as no impairment in Object Location. The deficits in synaptic plasticity and MWM performance occur in concert with decreased 2-AG and its major lipid metabolite (arachidonic acid), but increases of a 2-AG diacylglycerol precursor in hippocampus, PFC, striatum, and cerebellum. These novel behavioral and electrophysiological results implicate a direct and perhaps selective role of DAGL-α in the integration of new spatial information.SIGNIFICANCE STATEMENT Here we show that genetic deletion or pharmacologic inhibition of diacylglycerol lipase-α (DAGL-α) impairs hippocampal CA1 LTP, differentially disrupts spatial learning and memory performance in Morris water maze (MWM) and Object Location tasks, and alters brain levels of endocannabinoids and related lipids. Whereas DAGL-α-/- mice exhibit profound phenotypic spatial memory deficits, a DAGL inhibitor selectively impairs the integration of new information in MWM acquisition and reversal tasks, but not memory processes of expression, extinction, forgetting, or perseveration, and does not affect performance in the Objection Location task. The findings that constitutive or short-term DAGL-α disruption impairs learning and memory at electrophysiological and selective in vivo levels implicate this enzyme as playing a key role in the integration of new spatial information.


Asunto(s)
Hipocampo/metabolismo , Lipoproteína Lipasa/metabolismo , Memoria , Aprendizaje Espacial , Animales , Ácido Araquidónico/metabolismo , Hipocampo/fisiología , Lipoproteína Lipasa/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Rapid Commun Mass Spectrom ; 34(11): e8771, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32110843

RESUMEN

RATIONALE: Natural plant products have been used to promote health, prevent sickness, and treat various ailments. These products often consist of leaves, flowers, bark, roots, seeds, and/or other parts of the plant. Many of the pharmacologically active constituents of these products are known, but the pharmacology of these constituents may not be fully elucidated. Natural plant-based products are also available in various forms other than the raw plant material. A wide array of commercial products such as capsules, powders, extracts, and electronic cigarette (e-cigarette) electronic liquids (e-liquids) are readily available and can be purchased from various outlets, both store-based retailers and online. Newer e-cigarettes are often advertised as "heat not burn" and are used for "vaping" various forms of extracts including "waxes" and "dabs" and raw plant material. METHODS: A single manufacturer was found online selling "24 different herbs" in powders, extracts, or e-liquids. These were advertised as "legal in the USA" and each product listed multiple effects. Eight e-liquids, six extracts (resins), and four powders from eight different "herbs," namely African dream, areca nut, blue lotus, damiana, kra thum na, kra thum kok, klip dagga, and wild lettuce, were purchased. An advertisement for these products stated, "Most people use the leaves, powder or resin in vaporizers." Direct analysis in real time AccuTOF™ mass spectrometry (DART-MS) was used to identify the psychoactive components in the natural products. RESULTS: The psychoactive compounds that were identified in only two of the eight e-liquids, three of the five resins, and three of the four powders were arecaidine, arecoline, coumarin, entadamide, mitragynine, 7-hydroxymitragynine, and nuciferine. CONCLUSIONS: Psychoactive and potentially harmful substances were present in the powders and resins of the natural products. The newer types of e-cigarettes made for consuming natural products may increase their abuse potential.


Asunto(s)
Productos Biológicos/análisis , Sistemas Electrónicos de Liberación de Nicotina , Preparaciones de Plantas/análisis , Aporfinas/análisis , Aporfinas/química , Productos Biológicos/química , Humanos , Espectrometría de Masas , Preparaciones de Plantas/química , Seguridad , Alcaloides de Triptamina Secologanina/análisis , Alcaloides de Triptamina Secologanina/química , Vapeo
7.
Inhal Toxicol ; 32(13-14): 447-455, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33140978

RESUMEN

INTRODUCTION: Electronic cigarettes (e-cigarettes) have rapidly evolved since their introduction to the U.S. market. The rebuildable atomizer (RBA) offers user-driven modification to the heating element (coil) and wicking systems. Different coil materials can be chosen based on user needs and preferences. However, the heating element of an e-cigarette is believed to be one-source for toxic metal exposure. METHODS: E-cigarette coils from Kanthal and nichrome wires were constructed in a contact and non-contact configuration and heated at four voltages. The maximum temperatures of the coils were measured by infrared temperature sensing when dry and when saturated with 100% vegetable glycerin or 100% propylene glycol. The metal composition of each coil was analyzed with Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM-EDX) when new, and subsequently after 1, 50, and 150 heat cycles when dry. RESULTS: The coils reached temperatures above 1000 °C when dry, but were below 300 °C in both liquid-saturated mediums. Metal analysis showed a decrease of 9-19% chromium and 39-58% iron in Kanthal wire and a decrease of 12-14% iron and 39-43% nickel in nichrome wire after 150 heat cycles. Significant metal loss was observed after one heat cycle for both coil alloys and configurations. CONCLUSIONS: The loss of metals from these heat cycles further suggests that the metals from the coils are potentially entering the aerosol of the e-cigarette, which can be inhaled by the user.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Metales Pesados/análisis , Rayos Infrarrojos , Microscopía Electrónica de Rastreo , Temperatura , Rayos X
8.
Biomed Chromatogr ; 33(4): e4465, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30548295

RESUMEN

Carbenoxolone is a derivative of glycyrrhetinic acid found in the root of Glycyrrhiza glabra, colloquially known as licorice. It has been used as a treatment for peptic and oral ulcers. In recent years, carbenoxolone has been utilized in basic research for its ability to block gap junctional communication. Better understanding the distribution of carbenoxolone after systemic administration can lead to a better understanding of its potential sites of action. Presented is an ultra high-performance liquid chromatography tandem mass spectrometer (UHPLC-MS/MS) method for the identification and quantification of carbenoxolone in mouse blood and brain tissue. Twenty mice were injected intraperitoneally with 25 mg/kg carbenoxolone and brain tissue and blood were collected for analysis. Blood concentrations (mean ± SD) at 15, 30, 60 and 120 min were determined to be (n = 5) 5394 ± 778, 2636 ± 836, 1564 ± 541 and 846 ± 252 ng/mL, respectively. Brain concentrations (mean ± SD) at 15, 30, 60 and 120 mins were determined to be (n = 5) 171 ± 62, 102 ± 35, 55 ± 10 and 27 ± 9 ng/g, respectively. The analysis of these specimens at the four different time points resulted in blood and brain half-lives in mice of ~43 and 41 min, respectively. The UHPLC-MS/MS method was determined to be sensitive and robust for quantification of carbenoxolone.


Asunto(s)
Química Encefálica/fisiología , Carbenoxolona/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Carbenoxolona/administración & dosificación , Carbenoxolona/química , Carbenoxolona/farmacocinética , Estabilidad de Medicamentos , Inyecciones Intraperitoneales , Límite de Detección , Modelos Lineales , Masculino , Ratones , Reproducibilidad de los Resultados
9.
Am J Physiol Renal Physiol ; 315(4): F967-F976, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29846106

RESUMEN

The kidneys contribute to the control of body fluid and electrolytes and the long-term regulation of blood pressure through various systems, including the endocannabinoid system. Previously, we showed that inhibition of the two major endocannabinoid-hydrolyzing enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, in the renal medulla increased the rate of urine excretion (UV) and salt excretion without affecting mean arterial pressure (MAP). The present study evaluated the effects of a selective FAAH inhibitor, N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidine carboxamide (PF-3845) on MAP and renal functions. Infusion of PF-3845 into the renal medulla of C57BL/6J mice reduced MAP during the posttreatment phases and increased UV at 15 and 30 nmol/min per gram kidney weight (g kwt), relative to the pretreatment control phase. Intravenous PF-3845 administration reduced MAP at the 7.5, 15, and 30 doses and increased UV at the 15 and 30 nmol⋅min-1⋅g-1 kwt doses. PF-3845 treatment elevated sodium and potassium urinary excretion and medullary blood flow. Homozygous FAAH knockout mice were refractory to intramedullary PF-3845-induced changes in MAP, but UV was increased. Both MAP and UV responses to intramedullary PF-3845 in C57BL/6J mice were diminished by pretreatment with the cannabinoid type 1 receptor-selective antagonist, rimonabant (3 mg/kg, ip) but not the cyclooxygenase 2-selective inhibitor, celecoxib (15 mg/kg, iv). Liquid chromatography-tandem mass spectrometry analyses showed increased anandamide in kidney tissue and 2-arachidonoyl glycerol in plasma after intramedullary PF-3845. These data suggest that inhibition of FAAH in the renal medulla leads to both a diuretic and blood pressure-lowering response mediated by elevated anandamide in kidney tissue or 2-arachidonoyl glycerol in plasma.


Asunto(s)
Amidohidrolasas/farmacología , Presión Arterial/efectos de los fármacos , Médula Renal/efectos de los fármacos , Piperidinas/farmacología , Piridinas/farmacología , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Diuresis/efectos de los fármacos , Endocannabinoides/farmacología , Inhibidores Enzimáticos/farmacología , Masculino , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/antagonistas & inhibidores , Alcamidas Poliinsaturadas/farmacología
10.
J Pharmacol Exp Ther ; 366(1): 169-183, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29540562

RESUMEN

Although paclitaxel effectively treats various cancers, its debilitating peripheral neuropathic pain side effects often persist long after treatment has ended. Therefore, a compelling need exists for the identification of novel pharmacologic strategies to mitigate this condition. As inhibitors of monoacylglycerol lipase (MAGL), the primary hydrolytic enzyme of the endogenous cannabinoid, 2-arachidonyolglycerol, produces antinociceptive effects in numerous rodent models of pain, we investigated whether inhibitors of this enzyme (i.e., JZL184 and MJN110) would reverse paclitaxel-induced mechanical allodynia in mice. These drugs dose dependently reversed allodynia with respective ED50 values (95% confidence limit) of 8.4 (5.2-13.6) and 1.8 (1.0-3.3) mg/kg. Complementary genetic and pharmacologic approaches revealed that the antiallodynic effects of each drug require both cannabinoid receptors, CB1 and CB2 MJN110 reduced paclitaxel-mediated increased expression of monocyte chemoattractant protein-1 (MCP-1, CCL2) and phospho-p38 MAPK in dorsal root ganglia as well as MCP-1 in spinal dorsal horn. Whereas the antinociceptive effects of high dose JZL184 (40 mg/kg) underwent tolerance following 6 days of repeated dosing, repeated administration of a threshold dose (i.e., 4 mg/kg) completely reversed paclitaxel-induced allodynia. In addition, we found that the administration of MJN110 to control mice lacked intrinsic rewarding effects in the conditioned place preference (CPP) paradigm. However, it produced a CPP in paclitaxel-treated animals, suggesting a reduced paclitaxel-induced aversive state. Importantly, JZL184 did not alter the antiproliferative and apoptotic effects of paclitaxel in A549 and H460 non-small cell lung cancer cells. Taken together, these data indicate that MAGL inhibitors reverse paclitaxel-induced neuropathic pain without interfering with chemotherapeutic efficacy.


Asunto(s)
Antineoplásicos/efectos adversos , Inhibidores Enzimáticos/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Monoacilglicerol Lipasas/antagonistas & inhibidores , Nocicepción/efectos de los fármacos , Paclitaxel/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Biomarcadores/metabolismo , Carbamatos/farmacología , Carbamatos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Inflamación/metabolismo , Masculino , Ratones , Fosfoproteínas/metabolismo , Piperidinas/farmacología , Piperidinas/uso terapéutico , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Succinimidas/farmacología , Succinimidas/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Alcohol Clin Exp Res ; 42(8): 1476-1485, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29786878

RESUMEN

BACKGROUND: Complex interactions between environmental and genetic factors influence the risk of developing alcohol use disorder (AUD) in humans. To date, studies of the impact of environment on AUD risk have primarily focused on psychological characteristics or on the effects of developmental exposure to ethanol (EtOH). We recently observed that modifying levels of the long-chain ω-3 (LC ω-3) fatty acid, eicosapentaenoic acid (EPA), alters acute physiological responses to EtOH in Caenorhabditis elegans. Because mammals derive ω-3 fatty acids from their diet, here we asked if manipulating dietary levels of LC ω-3 fatty acids can affect EtOH-responsive behaviors in mice. METHODS: We used 2 well-characterized inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), which differ in their responses to EtOH. Age-matched young adult male mice were maintained on isocaloric diets that differed only by being enriched or depleted in LC ω-3 fatty acids. Animals were subsequently tested for acute EtOH sensitivity (locomotor activation and sedation), voluntary consumption, and metabolism. Fat deposition was also determined. RESULTS: We found that dietary levels of LC ω-3s altered EtOH sensitivity and consumption in a genotype-specific manner. Both B6 and D2 animals fed high LC ω-3 diets demonstrated lower EtOH-induced locomotor stimulation than those fed low LC ω-3 diets. EtOH sedation and EtOH metabolism were greater in D2, but not B6 mice on the high LC ω-3 diet. Conversely, LC ω-3 dietary manipulation altered EtOH consumption in B6, but not in D2 mice. B6 mice on a high LC ω-3 diet consumed more EtOH in a 2-bottle choice intermittent access model than B6 mice on a low LC ω-3 diet. CONCLUSIONS: Because EtOH sensitivity is predictive of risk of developing AUD in humans, our data indicate that dietary LC ω-3 levels should be evaluated for their impact on AUD risk in humans. Further, these studies indicate that genetic background can interact with fatty acids in the diet to significantly alter EtOH-responsive behaviors.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Conducta Animal/efectos de los fármacos , Dieta , Etanol/farmacología , Ácidos Grasos Omega-3/administración & dosificación , Alcoholismo/fisiopatología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Especificidad de la Especie
12.
J Am Chem Soc ; 139(25): 8601-8611, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28574716

RESUMEN

Heroin is a highly abused opioid and incurs a significant detriment to society worldwide. In an effort to expand the limited pharmacotherapy options for opioid use disorders, a heroin conjugate vaccine was developed through comprehensive evaluation of hapten structure, carrier protein, adjuvant and dosing. Immunization of mice with an optimized heroin-tetanus toxoid (TT) conjugate formulated with adjuvants alum and CpG oligodeoxynucleotide (ODN) generated heroin "immunoantagonism", reducing heroin potency by >15-fold. Moreover, the vaccine effects proved to be durable, persisting for over eight months. The lead vaccine was effective in rhesus monkeys, generating significant and sustained antidrug IgG titers in each subject. Characterization of both mouse and monkey antiheroin antibodies by surface plasmon resonance (SPR) revealed low nanomolar antiserum affinity for the key heroin metabolite, 6-acetylmorphine (6AM), with minimal cross reactivity to clinically used opioids. Following a series of heroin challenges over six months in vaccinated monkeys, drug-sequestering antibodies caused marked attenuation of heroin potency (>4-fold) in a schedule-controlled responding (SCR) behavioral assay. Overall, these preclinical results provide an empirical foundation supporting the further evaluation and potential clinical utility of an effective heroin vaccine in treating opioid use disorders.


Asunto(s)
Adyuvantes Inmunológicos/química , Diseño de Fármacos , Haptenos/química , Heroína , Vacunas Conjugadas , Inmunidad Humoral
13.
Am J Physiol Renal Physiol ; 313(5): F1068-F1076, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28768662

RESUMEN

The renal medulla, considered critical for the regulation of salt and water balance and long-term blood pressure control, is enriched in anandamide and two of its major metabolizing enzymes, cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH). Infusion of anandamide (15, 30, and 60 nmol·min-1·kg-1) into the renal medulla of C57BL/6J mice stimulated diuresis and salt excretion in a COX-2- but not COX-1-dependent manner. To determine whether endogenous endocannabinoids in the renal medulla can elicit similar effects, the effects of intramedullary isopropyl dodecyl fluorophosphate (IDFP), which inhibits the two major endocannabinoid hydrolases, were studied. IDFP treatment increased the urine formation rate and sodium excretion in a COX-2- but not COX-1-dependent manner. Neither anandamide nor IDFP affected the glomerular filtration rate. Neither systemic (0.625 mg·kg-1·30 min-1 iv) nor intramedullary (15 nmol·min-1·kg-1·30 min-1) IDFP pretreatment before intramedullary anandamide (15-30 nmol·min-1·kg-1) strictly blocked effects of anandamide, suggesting that hydrolysis of anandamide was not necessary for its diuretic effect. Intramedullary IDFP had no effect on renal blood flow but stimulated renal medullary blood flow. The effects of IDFP on urine flow rate and medullary blood flow were FAAH-dependent as demonstrated using FAAH knockout mice. Analysis of mouse urinary PGE2 concentrations by HPLC-electrospray ionization tandem mass spectrometry showed that IDFP treatment decreased urinary PGE2 These data are consistent with a role of FAAH and endogenous anandamide acting through a COX-2-dependent metabolite to regulate diuresis and salt excretion in the mouse kidney.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Diuresis , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Ciclooxigenasa 2/metabolismo , Diuresis/efectos de los fármacos , Endocannabinoides/metabolismo , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/metabolismo , Natriuresis/efectos de los fármacos , Natriuresis/fisiología , Alcamidas Poliinsaturadas/metabolismo , Circulación Renal/fisiología
14.
J Pharmacol Exp Ther ; 362(1): 45-52, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28442580

RESUMEN

This study compared the development of tolerance to two orally bioavailable prescription opioids, oxycodone and hydrocodone, to that of morphine, and the reversal of this tolerance by ethanol. Oxycodone (s.c.) was significantly more potent in the mouse tail-withdrawal assay than either morphine or hydrocodone. Oxycodone was also significantly more potent in this assay than hydrocodone when administered orally. Tolerance was seen following chronic subcutaneous administration of each of the three drugs and by the chronic administration of oral oxycodone, but not following the chronic oral administration of hydrocodone. Ethanol (1 g/kg i.p.) significantly reversed the tolerance to the subcutaneous administration of each of the three opioids that developed when given 30 minutes prior to challenge doses. It took twice as much ethanol, when given orally, to reverse the tolerance to oxycodone. We investigated whether the observed tolerance to oxycodone and its reversal by ethanol were due to biodispositional changes or reflected a true neuronal tolerance. As expected, a relationship between brain oxycodone concentrations and activity in the tail-immersion test existed following administration of acute oral oxycodone. Following chronic treatment, brain oxycodone concentrations were significantly lower than acute concentrations. Oral ethanol (2 g/kg) reversed the tolerance to chronic oxycodone, but did not alter brain concentrations of either acute or chronic oxycodone. These studies show that there is a metabolic component of tolerance to oxycodone; however, the reversal of that tolerance by ethanol is not due to an alteration of the biodisposition of oxycodone, but rather is neuronal in nature.


Asunto(s)
Analgésicos Opioides/farmacología , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Hidrocodona/farmacología , Oxicodona/farmacología , Analgésicos Opioides/farmacocinética , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Hidrocodona/farmacocinética , Masculino , Ratones , Oxicodona/farmacocinética , Dolor/psicología , Dimensión del Dolor/efectos de los fármacos
15.
Addict Biol ; 22(5): 1169-1178, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27060605

RESUMEN

Synthetic cathinones are beta-ketone amphetamine analogs that have emerged as a heterogeneous class of abused compounds that function as either monoamine transporter substrates or inhibitors. Pre-clinical drug discrimination procedures are useful for interrogating structure-activity relationships of abuse-related drug effects; however, in vivo structure-activity relationship comparisons between synthetic cathinones with different mechanisms of action are lacking. The aim of the present study was to determine whether the cocaine-like discriminative stimulus effects of the monoamine transporter inhibitor alpha-pyrrolidinovalerophenone (alpha-PVP) and the monoamine transporter substrate methcathinone were differentially sensitive to 3,4-methylenedioxy and 4-methyl substitutions. Male rhesus monkeys (n = 4) were trained to discriminate intramuscular cocaine (0.32 mg/kg) from saline in a two-key food-reinforced discrimination procedure. Potency and timecourse of cocaine-like discriminative stimulus effects were determined for (±)-alpha-PVP, (±)-methcathinone and their 3,4-methylenedioxy or 4-methyl analogs. Alpha-PVP and methcathinone produced dose- and time-dependent cocaine-like effects. A 3,4-methylenedioxy addition to either alpha-PVP or methcathinone (methylone) did not alter the potency or efficacy to produce cocaine-like effects, but did prolong the time course. A 4-methyl addition to alpha-PVP (pyrovalerone) did not alter the potency or efficacy to produce cocaine-like effects, but did prolong the time course. In contrast, addition of a 4-methyl moiety to methcathinone (4MMC; mephedrone) significantly attenuated efficacy to produce cocaine-like effects. Overall, these results suggest different structural requirements for cocaine-like discriminative stimulus effects of monoamine transporter inhibitor and substrate synthetic cathinone analogs. Given that 4MMC is more hydrophobic than MDMC, these results suggest that hydrophobicity may be an important determinant for limiting monoamine transporter substrate abuse-related behavioral effects.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Cocaína , Aprendizaje Discriminativo/fisiología , Inhibidores de Captación de Dopamina , Metanfetamina/análogos & derivados , Propiofenonas , Pirrolidinas , Animales , Condicionamiento Operante , Inyecciones Intramusculares , Macaca mulatta , Masculino , Refuerzo en Psicología
16.
J Pharmacol Exp Ther ; 357(1): 145-56, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26791602

RESUMEN

Serious clinical liabilities associated with the prescription of opiates for pain control include constipation, respiratory depression, pruritus, tolerance, abuse, and addiction. A recognized strategy to circumvent these side effects is to combine opioids with other antinociceptive agents. The combination of opiates with the primary active constituent of cannabis (Δ(9)-tetrahydrocannabinol) produces enhanced antinociceptive actions, suggesting that cannabinoid receptor agonists can be opioid sparing. Here, we tested whether elevating the endogenous cannabinoid 2-arachidonoylglycerol through the inhibition of its primary hydrolytic enzyme monoacylglycerol lipase (MAGL), will produce opioid-sparing effects in the mouse chronic constriction injury (CCI) of the sciatic nerve model of neuropathic pain. The dose-response relationships of i.p. administration of morphine and the selective MAGL inhibitor 2,5-dioxopyrrolidin-1-yl 4-(bis(4-chlorophenyl)methyl)piperazine-1-carboxylate (MJN110) were tested alone and in combination at equieffective doses for reversal of CCI-induced mechanical allodynia and thermal hyperalgesia. The respective ED50 doses (95% confidence interval) of morphine and MJN110 were 2.4 (1.9-3.0) mg/kg and 0.43 (0.23-0.79) mg/kg. Isobolographic analysis of these drugs in combination revealed synergistic antiallodynic effects. Acute antinociceptive effects of the combination of morphine and MJN110 required µ-opioid, CB1, and CB2 receptors. This combination did not reduce gastric motility or produce subjective cannabimimetic effects in the drug discrimination assay. Importantly, combinations of MJN110 and morphine given repeatedly (i.e., twice a day for 6 days) continued to produce antiallodynic effects with no evidence of tolerance. Taken together, these findings suggest that MAGL inhibition produces opiate-sparing events with diminished tolerance, constipation, and cannabimimetic side effects.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Carbamatos/farmacología , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Neuralgia/tratamiento farmacológico , Succinimidas/farmacología , Animales , Ácidos Araquidónicos/metabolismo , Conducta Animal/efectos de los fármacos , Constricción Patológica/complicaciones , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/administración & dosificación , Morfina/uso terapéutico , Neuralgia/inducido químicamente , Neuralgia/psicología , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB2/efectos de los fármacos , Receptores Opioides mu/efectos de los fármacos
17.
Mol Pharmacol ; 87(4): 747-65, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25657338

RESUMEN

Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca(2+) channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide-binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [(35)S]GTPγS (guanylyl-5'-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA-mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [(35)S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist-stimulated CB1R signaling and downregulation of CB1Rs. Thus, CRIP1a appears to act as a broad negative regulator of CB1R function.


Asunto(s)
Proteínas Portadoras/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular , Cerebelo/metabolismo , Endocannabinoides/metabolismo , Proteínas de Unión al GTP/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Neuronas/metabolismo , Ensayo de Unión Radioligante , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/agonistas , Transducción de Señal
18.
Int J Neuropsychopharmacol ; 18(8)2015 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-25618405

RESUMEN

BACKGROUND: Chronic amphetamine treatment decreases cocaine consumption in preclinical and human laboratory studies and in clinical trials. Lisdexamfetamine is an amphetamine prodrug in which L-lysine is conjugated to the terminal nitrogen of d-amphetamine. Prodrugs may be advantageous relative to their active metabolites due to slower onsets and longer durations of action; however, lisdexamfetamine treatment's efficacy in decreasing cocaine consumption is unknown. METHODS: This study compared lisdexamfetamine and d-amphetamine effects in rhesus monkeys using two behavioral procedures: (1) a cocaine discrimination procedure (training dose = 0.32mg/kg cocaine, i.m.); and (2) a cocaine-versus-food choice self-administration procedure. RESULTS: In the cocaine-discrimination procedure, lisdexamfetamine (0.32-3.2mg/kg, i.m.) substituted for cocaine with lower potency, slower onset, and longer duration of action than d-amphetamine (0.032-0.32mg/kg, i.m.). Consistent with the function of lisdexamfetamine as an inactive prodrug for amphetamine, the time course of lisdexamfetamine effects was related to d-amphetamine plasma levels by a counter-clockwise hysteresis loop. In the choice procedure, cocaine (0-0.1mg/kg/injection, i.v.) and food (1g banana-flavored pellets) were concurrently available, and cocaine maintained a dose-dependent increase in cocaine choice under baseline conditions. Treatment for 7 consecutive days with lisdexamfetamine (0.32-3.2mg/kg/day, i.m.) or d-amphetamine (0.032-0.1mg/kg/h, i.v.) produced similar dose-dependent rightward shifts in cocaine dose-effect curves and decreases in preference for 0.032mg/kg/injection cocaine. CONCLUSIONS: Lisdexamfetamine has a slower onset and longer duration of action than amphetamine but retains amphetamine's efficacy to reduce the choice of cocaine in rhesus monkeys. These results support further consideration of lisdexamfetamine as an agonist-based medication candidate for cocaine addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/tratamiento farmacológico , Inhibidores de Captación de Dopamina/farmacología , Dimesilato de Lisdexanfetamina/farmacología , Animales , Conducta de Elección/efectos de los fármacos , Cocaína/administración & dosificación , Condicionamiento Operante/efectos de los fármacos , Dextroanfetamina/farmacología , Discriminación en Psicología/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Preferencias Alimentarias/efectos de los fármacos , Macaca mulatta , Masculino , Autoadministración , Factores de Tiempo
19.
Psychosomatics ; 56(2): 129-39, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25659919

RESUMEN

BACKGROUND: A new class of synthetic hallucinogens called NBOMe has emerged as drugs of abuse. OBJECTIVE: Our aim was to conduct a systematic review of published reports of toxicities associated with NBOMe ingestion. METHODS: We searched PubMed for relevant English-language citations that described adverse effects from analytically confirmed human NBOMe ingestion. Demographic and clinical data were extracted. RESULTS: A total of 10 citations met the criteria for inclusion, representing 20 individual patients. 25I-NBOMe was the most common analogue identified, followed by 25B-NBOMe and 25C-NBOMe. Fatalities were reported in 3 (15%) cases. Of all the patients, 7 (35%) were discharged after a period of observation, whereas 8 (40.0%) required admission to an intensive care unit. The most common adverse effects were agitation (85.0%), tachycardia (85.0%), and hypertension (65.0%). Seizures were reported in 8 (40.0%) patients. The most common abnormalities reported on laboratory tests were elevated level of creatinine kinase (45.0%), leukocytosis (25.0%), and hyperglycemia (20.0%). CONCLUSION: NBOMe ingestion is associated with severe adverse effects. Clinicians need to have a high index of suspicion for NBOMe ingestion in patients reporting the recent use of hallucinogens.


Asunto(s)
Alucinógenos/envenenamiento , Hiperglucemia/inducido químicamente , Hipertensión/inducido químicamente , Leucocitosis/inducido químicamente , Convulsiones/inducido químicamente , Taquicardia/inducido químicamente , Anisoles/envenenamiento , Bencilaminas/envenenamiento , Creatina Quinasa/metabolismo , Dimetoxifeniletilamina/análogos & derivados , Dimetoxifeniletilamina/envenenamiento , Humanos , Recuento de Leucocitos , Fenetilaminas/envenenamiento
20.
Behav Pharmacol ; 25(2): 119-29, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24583930

RESUMEN

Cannabinoid receptor (CBR) agonists produce antinociception in conventional preclinical assays of pain-stimulated behavior but are not effective in preclinical assays of pain-depressed behavior. Fatty acid amide hydrolase (FAAH) inhibitors increase physiological levels of the endocannabinoid anandamide, which may confer improved efficacy and safety relative to direct CBR agonists. To further evaluate FAAH inhibitors as candidate analgesics, this study assessed the effects of the FAAH inhibitor URB597 in assays of acute pain-stimulated and pain-depressed behavior in male Sprague-Dawley rats. Intraperitoneal injection of dilute lactic acid served as a noxious stimulus to stimulate a stretching response or depress positively reinforced operant behavior (intracranial self-stimulation), and URB597 was tested 1 and 4 h after administration. Consistent with FAAH inhibitor effects in other assays of pain-stimulated behavior, URB597 (1-10 mg/kg intraperitoneally) produced dose-related and CB1R-mediated decreases in acid-stimulated stretching. Conversely, in the assay of acid-depressed intracranial self-stimulation, URB597 produced a delayed, partial and non-CBR-mediated antinociceptive effect. The antinociceptive dose of URB597 (10 mg/kg) increased plasma and brain anandamide levels. These results suggest that URB597 produces antinociception in these models of 'pain stimulated' and 'pain depressed' behavior, but with different rates of onset and differential involvement of CBRs.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Analgésicos/farmacología , Benzamidas/farmacología , Carbamatos/farmacología , Depresión/tratamiento farmacológico , Dolor/tratamiento farmacológico , Animales , Ácidos Araquidónicos/sangre , Ácidos Araquidónicos/metabolismo , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Depresión/etiología , Depresión/metabolismo , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Endocannabinoides/sangre , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/farmacología , Neuroestimuladores Implantables , Inyecciones Intraperitoneales , Ácido Láctico , Masculino , Dolor/complicaciones , Dolor/metabolismo , Alcamidas Poliinsaturadas/sangre , Alcamidas Poliinsaturadas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Cannabinoides/metabolismo , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA