Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Traffic ; 24(8): 355-379, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37340984

RESUMEN

Deficiency in the conserved oligomeric Golgi (COG) complex that orchestrates SNARE-mediated tethering/fusion of vesicles that recycle the Golgi's glycosylation machinery results in severe glycosylation defects. Although two major Golgi v-SNAREs, GS28/GOSR1, and GS15/BET1L, are depleted in COG-deficient cells, the complete knockout of GS28 and GS15 only modestly affects Golgi glycosylation, indicating the existence of an adaptation mechanism in Golgi SNARE. Indeed, quantitative mass-spectrometry analysis of STX5-interacting proteins revealed two novel Golgi SNARE complexes-STX5/SNAP29/VAMP7 and STX5/VTI1B/STX8/YKT6. These complexes are present in wild-type cells, but their usage is significantly increased in both GS28- and COG-deficient cells. Upon GS28 deletion, SNAP29 increased its Golgi residency in a STX5-dependent manner. While STX5 depletion and Retro2-induced diversion from the Golgi severely affect protein glycosylation, GS28/SNAP29 and GS28/VTI1B double knockouts alter glycosylation similarly to GS28 KO, indicating that a single STX5-based SNARE complex is sufficient to support Golgi glycosylation. Importantly, co-depletion of three Golgi SNARE complexes in GS28/SNAP29/VTI1B TKO cells resulted in severe glycosylation defects and a reduced capacity for glycosylation enzyme retention at the Golgi. This study demonstrates the remarkable plasticity in SXT5-mediated membrane trafficking, uncovering a novel adaptive response to the failure of canonical intra-Golgi vesicle tethering/fusion machinery.


Asunto(s)
Aparato de Golgi , Proteínas SNARE , Proteínas Qa-SNARE/metabolismo , Aparato de Golgi/metabolismo , Proteínas SNARE/metabolismo
2.
Traffic ; 24(2): 52-75, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36468177

RESUMEN

Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats-COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells.


Asunto(s)
Aparato de Golgi , Proteínas SNARE , Humanos , Aparato de Golgi/metabolismo , Proteínas SNARE/metabolismo , Glicosilación , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas R-SNARE/metabolismo
3.
Platelets ; 34(1): 2264978, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37933490

RESUMEN

Platelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients. Statistical analysis reveals that the α-granule/mitochondrion-to-plateletvolume ratio is significantly greater in COVID-19 patient platelets indicating a denser packing of organelles, and a more compact platelet. The COVID-19 patient platelets were significantly smaller -by 35% in volume - with most of the difference in organelle packing density being due to decreased platelet size. There was little to no 3D ultrastructural evidence for differential activation of the platelets from COVID-19 patients. Though limited by sample size, our studies suggest that factors outside of the platelets themselves are likely responsible for COVID-19 complications. Our studies show how deep learning 3D methodology can become the gold standard for 3D ultrastructural studies of platelets.


COVID-19 patients exhibit a range of symptoms including microclotting. Clotting is a complex process involving both circulating proteins and platelets, a cell within the blood. Increased clotting is suggestive of an increased level of platelet activation. If this were true, we reasoned that parts of the platelet involved in the release of platelet contents during clotting would have lost their content and appear as expanded, empty "ghosts." To test this, we drew blood from severely ill COVID-19 patients and compared the platelets within the blood draws to those from healthy volunteers. All procedures were done under careful attention to biosafety and approved by health authorities. We looked within the platelets for empty ghosts by the high magnification technique of electron microscopy. To count the ghosts, we developed new computer software. In the end, we found little difference between the COVID patient platelets and the healthy donor platelets. The results suggest that circulating proteins outside of the platelet are more important to the strong clotting response. The software developed will be used to analyze other disease states.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , ARN Viral , SARS-CoV-2 , Plaquetas/ultraestructura , Orgánulos
4.
Platelets ; 32(5): 608-617, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32815431

RESUMEN

Mice and mouse platelets are major experimental models for hemostasis and thrombosis; however, important physiological data from this model has received little to no quantitative, 3D ultrastructural analysis. We used state-of-the-art, serial block imaging scanning electron microscopy (SBF-SEM, nominal Z-step size was 35 nm) to image resting platelets from C57BL/6 mice. α-Granules were identified morphologically and rendered in 3D space. The quantitative analysis revealed that mouse α-granules typically had a variable, elongated, rod shape, different from the round/ovoid shape of human α-granules. This variation in length was confirmed qualitatively by higher-resolution, focused ion beam (FIB) SEM at a nominal 5 nm Z-step size. The unexpected α-granule shape raises novel questions regarding α-granule biogenesis and dynamics. Does the variation arise at the level of the megakaryocyte and α-granule biogenesis or from differences in α-granule dynamics and organelle fusion/fission events within circulating platelets? Further quantitative analysis revealed that the two major organelles in circulating platelets, α-granules and mitochondria, displayed a stronger linear relationship between organelle number/volume and platelet size, i.e., a scaling in number and volume to platelet size, than found in human platelets suggestive of a tighter mechanistic regulation of their inclusion during platelet biogenesis. In conclusion, the overall spatial arrangement of organelles within mouse platelets was similar to that of resting human platelets, with mouse α-granules clustered closely together with little space for interdigitation of other organelles.


Asunto(s)
Plaquetas/ultraestructura , Imagenología Tridimensional/métodos , Animales , Humanos , Ratones
5.
Platelets ; 32(1): 97-104, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-32000578

RESUMEN

The canalicular system (CS) has been defined as: 1) an inward, invaginated membrane connector that supports entry into and exit from the platelet; 2) a static structure stable during platelet isolation; and 3) the major source of plasma membrane (PM) for surface area expansion during activation. Recent analysis from STEM tomography and serial block face electron microscopy has challenged the relative importance of CS as the route for granule secretion. Here, We used 3D ultrastructural imaging to reexamine the CS in mouse platelets by generating high-resolution 3D reconstructions to test assumptions 2 and 3. Qualitative and quantitative analysis of whole platelet reconstructions, obtained from immediately fixed or washed platelets fixed post-washing, indicated that CS, even in the presence of activation inhibitors, reorganized during platelet isolation to generate a more interconnected network. Further, CS redistribution into the PM at different times, post-activation, appeared to account for only about half the PM expansion seen in thrombin-activated platelets, in vitro, suggesting that CS reorganization is not sufficient to serve as a dominant membrane reservoir for activated platelets. In sum, our analysis highlights the need to revisit past assumptions about the platelet CS to better understand how this membrane system contributes to platelet function.


Asunto(s)
Imagenología Tridimensional/métodos , Activación Plaquetaria/fisiología , Animales , Humanos , Ratones
6.
Traffic ; 19(6): 463-480, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29573151

RESUMEN

The conserved oligomeric Golgi (COG) complex controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle trafficking within the Golgi. Human COG defects lead to severe multisystemic diseases known as COG-congenital disorders of glycosylation (COG-CDG). To gain better understanding of COG-CDGs, we compared COG knockout cells with cells deficient to 2 key enzymes, Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase and uridine diphosphate-glucose 4-epimerase (GALE), which contribute to proper N- and O-glycosylation. While all knockout cells share similar defects in glycosylation, these defects only account for a small fraction of observed COG knockout phenotypes. Glycosylation deficiencies were not associated with the fragmented Golgi, abnormal endolysosomes, defective sorting and secretion or delayed retrograde trafficking, indicating that these phenotypes are probably not due to hypoglycosylation, but to other specific interactions or roles of the COG complex. Importantly, these COG deficiency specific phenotypes were also apparent in COG7-CDG patient fibroblasts, proving the human disease relevance of our CRISPR knockout findings. The knowledge gained from this study has important implications, both for understanding the physiological role of COG complex in Golgi homeostasis in eukaryotic cells, and for better understanding human diseases associated with COG/Golgi impairment.


Asunto(s)
Aparato de Golgi/metabolismo , Azúcares/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Línea Celular , Glicosilación , Células HEK293 , Humanos , Fenotipo , Transporte de Proteínas/fisiología
7.
Platelets ; 28(4): 400-408, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27753523

RESUMEN

Platelets are small, anucleate cell fragments that are central to hemostasis, thrombosis, and inflammation. They are derived from megakaryocytes from which they inherit their organelles. As platelets can synthesize proteins and contain many of the enzymes of the secretory pathway, one might expect all mature human platelets to contain a stacked Golgi apparatus, the central organelle of the secretory pathway. By thin section electron microscopy, stacked membranes resembling the stacked Golgi compartment in megakaryocytes and other nucleated cells can be detected in both proplatelets and platelets. However, the incidence of such structures is low and whether each and every platelet contains such a structure remains an open question. By single-label, immunofluorescence staining, Golgi glycosyltransferases are found within each platelet and map to scattered structures. Whether these structures are positive for marker proteins from multiple Golgi subcompartments remains unknown. Here, we have applied state-of-the-art techniques to probe the organization state of the Golgi apparatus in resting human platelets. By the whole cell volume technique of serial-block-face scanning electron microscopy (SBF-SEM), we failed to observe stacked, Golgi-like structures in any of the 65 platelets scored. When antibodies directed against Golgi proteins were tested against HeLa cells, labeling was restricted to an elongated juxtanuclear ribbon characteristic of a stacked Golgi apparatus. By multi-label immunofluorescence microscopy, we found that each and every resting human platelet was positive for cis, trans, and trans Golgi network (TGN) proteins. However, in each case, the proteins were found in small puncta scattered about the platelet. At the resolution of deconvolved, widefield fluorescence microscopy, these proteins had limited tendency to map adjacent to one another. When the results of 3D structured illumination microscopy (3D SIM), a super resolution technique, were scored quantitatively, the Golgi marker proteins failed to map together indicating at the protein level considerable degeneration of the platelet Golgi apparatus relative to the layered stack as seen in the megakaryocyte. In conclusion, we suggest that these results have important implications for organelle structure/function relationships in the mature platelet and the extent to which Golgi apparatus organization is maintained in platelets. Our results suggest that Golgi proteins in circulating platelets are present within a series of scattered, separated structures. As separate elements, selective sets of Golgi enzymes or sugar nucleotides could be secreted during platelet activation. The establishment of the functional importance, if any, of these scattered structures in sequential protein modification in circulating platelets will require further research.


Asunto(s)
Plaquetas/metabolismo , Aparato de Golgi/metabolismo , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Técnicas de Cultivo de Célula , Células HeLa , Humanos , Orgánulos
8.
Proc Natl Acad Sci U S A ; 111(44): 15762-7, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25331899

RESUMEN

The conserved oligomeric Golgi (COG) complex is required, along with SNARE and Sec1/Munc18 (SM) proteins, for vesicle docking and fusion at the Golgi. COG, like other multisubunit tethering complexes (MTCs), is thought to function as a scaffold and/or chaperone to direct the assembly of productive SNARE complexes at the sites of membrane fusion. Reflecting this essential role, mutations in the COG complex can cause congenital disorders of glycosylation. A deeper understanding of COG function and dysfunction will likely depend on elucidating its molecular structure. Despite some progress toward this goal, including EM studies of COG lobe A (subunits 1-4) and higher-resolution structures of portions of Cog2 and Cog4, the structures of COG's eight subunits and the principles governing their assembly are mostly unknown. Here, we report the crystal structure of a complex between two lobe B subunits, Cog5 and Cog7. The structure reveals that Cog5 is a member of the complexes associated with tethering containing helical rods (CATCHR) fold family, with homology to subunits of other MTCs including the Dsl1, exocyst, and Golgi-associated retrograde protein (GARP) complexes. The Cog5-Cog7 interaction is analyzed in relation to the Dsl1 complex, the only other CATCHR-family MTC for which subunit interactions have been characterized in detail. Biochemical and functional studies validate the physiological relevance of the observed Cog5-Cog7 interface, indicate that it is conserved from yeast to humans, and demonstrate that its disruption in human cells causes defects in trafficking and glycosylation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Complejos Multiproteicos/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Cristalografía por Rayos X , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
9.
Traffic ; 14(2): 194-204, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23057818

RESUMEN

Vesicular tethers and SNAREs are two key protein components that govern docking and fusion of intracellular membrane carriers in eukaryotic cells. The conserved oligomeric Golgi (COG) complex has been specifically implicated in the tethering of retrograde intra-Golgi vesicles. Using yeast two-hybrid and co-immunoprecipitation approaches, we show that the COG6 subunit of the COG complex is capable of interacting with a subset of Golgi SNAREs, namely STX5, STX6, GS27 and SNAP29. Interaction with SNAREs is accomplished via the universal SNARE-binding motif of COG6. Overexpression of COG6, or its depletion from cells, disrupts the integrity of the Golgi complex. Importantly, COG6 protein lacking the SNARE-binding domain is deficient in Golgi binding, and is not capable of inducing Golgi complex fragmentation when overexpressed. These results indicate that COG6-SNARE interactions are important for both COG6 localization and Golgi integrity.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Aparato de Golgi/metabolismo , Proteínas SNARE/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Sitios de Unión , Células HeLa , Humanos , Mutación , Unión Proteica , ARN Interferente Pequeño , Proteínas SNARE/genética , Vesículas Transportadoras/metabolismo , Técnicas del Sistema de Dos Híbridos
10.
J Vis Exp ; (207)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856226

RESUMEN

Hemostasis, the process of normal physiological control of vascular damage, is fundamental to human life. We all suffer minor cuts and puncture wounds from time to time. In hemostasis, self-limiting platelet aggregation leads to the formation of a structured thrombus in which bleeding cessation comes from capping the hole from the outside. Detailed characterization of this structure could lead to distinctions between hemostasis and thrombosis, a case of excessive platelet aggregation leading to occlusive clotting. An imaging-based approach to puncture wound thrombus structure is presented here that draws upon the ability of thin-section electron microscopy to visualize the interior of hemostatic thrombi. The most basic step in any imaging-based experimental protocol is good sample preparation. The protocol provides detailed procedures for preparing puncture wounds and platelet-rich thrombi in mice for subsequent electron microscopy. A detailed procedure is given for in situ fixation of the forming puncture wound thrombus and its subsequent processing for staining and embedding for electron microscopy. Electron microscopy is presented as the end imaging technique because of its ability, when combined with sequential sectioning, to visualize the details of the thrombus interior at high resolution. As an imaging method, electron microscopy gives unbiased sampling and an experimental output that scales from nanometer to millimeters in 2 or 3 dimensions. Appropriate freeware electron microscopy software is cited that will support wide-area electron microscopy in which hundreds of frames can be blended to give nanometer-scale imaging of entire puncture wound thrombi cross-sections. Hence, any subregion of the image file can be placed easily into the context of the full cross-section.


Asunto(s)
Microscopía Electrónica , Trombosis , Animales , Ratones , Microscopía Electrónica/métodos , Trombosis/patología , Hemostasis , Punciones/métodos
11.
Methods Mol Biol ; 2557: 211-223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512217

RESUMEN

A major goal of structural biologists is to preserve samples as close to their living state as possible. High-pressure freezing (HPF) is a state-of-art technique that freezes the samples at high pressure (~2100 bar) and low temperature (-196 °C) within milliseconds. This ultrarapid fixation enables simultaneous immobilization of all cellular components and preserves the samples in a near-native state. This facilitates the study of dynamic processes in Golgi apparatus organization and membrane trafficking. The work in our laboratory shows that high-pressure freezing followed by freeze substitution (FS), the introduction of organic solvents at low temperature prior to plastic embedding, can better preserve the structure of Golgi apparatus and Golgi-associated vesicles. Here, we present a protocol for freezing monolayer cell cultures on sapphire disks followed by freeze substitution. We were able to use this protocol to successfully study Golgi organization and membrane trafficking in HeLa cells. The protocol gives decidedly better preservation of Golgi apparatus and associated vesicles than conventional chemically fixed preparation and as a plastic embedded preparation can be readily extended to 3D electron microscopy imaging through sequential block face-scanning electron microscopy. The 3D imaging of a multi-micron thick organelle such as the Golgi apparatus located near the cell nucleus is greatly facilitated relative to hydrated sample imaging techniques such as cryo-electron microscopy.


Asunto(s)
Electrones , Substitución por Congelación , Humanos , Substitución por Congelación/métodos , Congelación , Microscopía por Crioelectrón , Células HeLa , Microscopía Electrónica de Rastreo , Aparato de Golgi
12.
Methods Mol Biol ; 2557: 365-390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512227

RESUMEN

Conserved oligomeric Golgi (COG) complex orchestrates intra-Golgi retrograde trafficking and glycosylation of macromolecules, but the detailed mechanism of COG action is unknown. Previous studies employed prolonged protein knockout and knockdown approaches which may potentially generate off-target and indirect mutant phenotypes. To achieve a fast depletion of COG subunits in human cells, the auxin-inducible degradation system was employed. This method of protein regulation allows a very fast and efficient depletion of COG subunits, which provides the ability to accumulate COG complex dependent (CCD) vesicles and investigate initial cellular defects associated with the acute depletion of COG complex subunits. This protocol is applicable to other vesicle tethering complexes and can be utilized to investigate anterograde and retrograde intracellular membrane trafficking pathways.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Aparato de Golgi , Animales , Humanos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Aparato de Golgi/metabolismo , Glicosilación , Transporte de Proteínas/fisiología , Ácidos Indolacéticos/metabolismo , Mamíferos/metabolismo
13.
Front Genet ; 14: 1204296, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359363

RESUMEN

Smith McCort (SMC) dysplasia is a rare, autosomal recessive, osteochondrodysplasia that can be caused by pathogenic variants in either RAB33B or DYM genes. These genes codes for proteins that are located at the Golgi apparatus and have a role in intracellular vesicle trafficking. We generated mice that carry a Rab33b disease-causing variant, c.136A>C (p.Lys46Gln), which is identical to that of members from a consanguineous family diagnosed with SMC. In male mice at 4 months of age, the Rab33b variant caused a mild increase in trabecular bone thickness in the spine and femur and in femoral mid-shaft cortical thickness with a concomitant reduction of the femoral medullary area, suggesting a bone resorption defect. In spite of the increase in trabecular and cortical thickness, bone histomorphometry showed a 4-fold increase in osteoclast parameters in homozygous Rab33b mice suggesting a putative impairment in osteoclast function, while dynamic parameters of bone formation were similar in mutant versus control mice. Femur biomechanical tests showed an increased in yield load and a progressive elevation, from WT to heterozygote to homozygous mutants, of bone intrinsic properties. These findings suggest an overall impact on bone material properties which may be caused by disturbed protein glycosylation in cells contributing to skeletal formation, supported by the altered and variable pattern of lectin staining in murine and human tissue cultured cells and in liver and bone murine tissues. The mouse model only reproduced some of the features of the human disease and was sex-specific, manifesting in male but not female mice. Our data reveal a potential novel role of RAB33B in osteoclast function and protein glycosylation and their dysregulation in SMC and lay the foundation for future studies.

14.
mBio ; : e0251323, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966241

RESUMEN

IMPORTANCE: The Golgi is an essential eukaryotic organelle and a major place for protein sorting and glycosylation. Among apicomplexan parasites, Toxoplasma gondii retains the most developed Golgi structure and produces many glycosylated factors necessary for parasite survival. Despite its importance, Golgi function received little attention in the past. In the current study, we identified and characterized the conserved oligomeric Golgi complex and its novel partners critical for protein transport in T. gondii tachyzoites. Our results suggest that T. gondii broadened the role of the conserved elements and reinvented the missing components of the trafficking machinery to accommodate the specific needs of the opportunistic parasite T. gondii.

15.
J Vis Exp ; (193)2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-37010311

RESUMEN

Cardiovascular diseases are a leading cause of mortality and morbidity worldwide. Aberrant thrombosis is a common feature of systemic conditions like diabetes and obesity, and chronic inflammatory diseases like atherosclerosis, cancer, and autoimmune diseases. Upon vascular injury, usually the coagulation system, platelets, and endothelium act in an orchestrated manner to prevent bleeding by forming a clot at the site of the injury. Abnormalities in this process lead to either excessive bleeding or uncontrolled thrombosis/insufficient antithrombotic activity, which translates into vessel occlusion and its sequelae. The FeCl3-induced carotid injury model is a valuable tool in probing how thrombosis initiates and progresses in vivo. This model involves endothelial damage/denudation and subsequent clot formation at the injured site. It provides a highly sensitive, quantitative assay to monitor vascular damage and clot formation in response to different degrees of vascular damage. Once optimized, this standard technique can be used to study the molecular mechanisms underlying thrombosis, as well as the ultrastructural changes in platelets in a growing thrombus. This assay is also useful to study the efficacy of antithrombotic and antiplatelet agents. This article explains how to initiate and monitor FeCl3-induced arterial thrombosis and how to collect samples for analysis by electron microscopy.


Asunto(s)
Fibrinolíticos , Trombosis , Humanos , Fibrinolíticos/farmacología , Plaquetas , Compuestos Férricos , Hemorragia/complicaciones , Microscopía Electrónica
16.
Res Pract Thromb Haemost ; 7(2): 100058, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36865905

RESUMEN

Background: Puncture wounding is a longstanding challenge to human health for which understanding is limited, in part, by a lack of detailed morphological data on how the circulating platelet capture to the vessel matrix leads to sustained, self-limiting platelet accumulation. Objectives: The objective of this study was to produce a paradigm for self-limiting thrombus growth in a mouse jugular vein model. Methods: Data mining of advanced electron microscopy images was performed from authors' laboratories. Results: Wide-area transmission electron mcrographs revealed initial platelet capture to the exposed adventitia resulted in localized patches of degranulated, procoagulant-like platelets. Platelet activation to a procoagulant state was sensitive to dabigatran, a direct-acting PAR receptor inhibitor, but not to cangrelor, a P2Y12 receptor inhibitor. Subsequent thrombus growth was sensitive to both cangrelor and dabigatran and sustained by the capture of discoid platelet strings first to collagen-anchored platelets and later to loosely adherent peripheral platelets. Spatial examination indicated that staged platelet activation resulted in a discoid platelet tethering zone that was pushed progressively outward as platelets converted from one activation state to another. As thrombus growth slowed, discoid platelet recruitment became rare and loosely adherent intravascular platelets failed to convert to tightly adherent platelets. Conclusions: In summary, the data support a model that we term Capture and Activate, in which the initial high platelet activation is directly linked to the exposed adventitia, all subsequent tethering of discoid platelets is to loosely adherent platelets that convert to tightly adherent platelets, and self-limiting, intravascular platelet activation over time is the result of decreased signaling intensity.

17.
Front Cell Dev Biol ; 10: 1066504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578782

RESUMEN

Golgi-associated retrograde protein (GARP) is an evolutionary conserved heterotetrameric protein complex that tethers endosome-derived vesicles and is vital for Golgi glycosylation. Microscopy and proteomic approaches were employed to investigate defects in Golgi physiology in RPE1 cells depleted for the GARP complex. Both cis and trans-Golgi compartments were significantly enlarged in GARP-knock-out (KO) cells. Proteomic analysis of Golgi-enriched membranes revealed significant depletion of a subset of Golgi residents, including Ca2+ binding proteins, enzymes, and SNAREs. Validation of proteomics studies revealed that SDF4 and ATP2C1, related to Golgi calcium homeostasis, as well as intra-Golgi v-SNAREs GOSR1 and BET1L, were significantly depleted in GARP-KO cells. Finding that GARP-KO is more deleterious to Golgi physiology than deletion of GARP-sensitive v-SNAREs, prompted a detailed investigation of COPI trafficking machinery. We discovered that in GARP-KO cells COPI is significantly displaced from the Golgi and partially relocalized to the ER-Golgi intermediate compartment (ERGIC). Moreover, COPI accessory proteins GOLPH3, ARFGAP1, GBF1, and BIG1 are also relocated to off-Golgi compartments. We propose that the dysregulation of COPI machinery, along with the depletion of Golgi v-SNAREs and alteration of Golgi Ca2+ homeostasis, are the major driving factors for the depletion of Golgi resident proteins, structural alterations, and glycosylation defects in GARP deficient cells.

18.
Traffic ; 10(10): 1502-17, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19678899

RESUMEN

Toxin trafficking studies provide valuable information about endogenous pathways of intracellular transport. Subtilase cytotoxin (SubAB) is transported in a retrograde manner through the endosome to the Golgi and then to the endoplasmic reticulum (ER), where it specifically cleaves the ER chaperone BiP/GRP78 (Binding immunoglobin protein/Glucose-Regulated Protein of 78 kDa). To identify the SubAB Golgi trafficking route, we have used siRNA-mediated silencing and immunofluorescence microscopy in HeLa and Vero cells. Knockdown (KD) of subunits of the conserved oligomeric Golgi (COG) complex significantly delays SubAB cytotoxicity and blocks SubAB trafficking to the cis Golgi. Depletion of Rab6 and beta-COP proteins causes a similar delay in SubAB-mediated GRP78 cleavage and did not augment the trafficking block observed in COG KD cells, indicating that all three Golgi factors operate on the same 'fast' retrograde trafficking pathway. SubAB trafficking is completely blocked in cells deficient in the Golgi SNARE Syntaxin 5 and does not require the activity of endosomal sorting nexins SNX1 and SNX2. Surprisingly, depletion of Golgi tethers p115 and golgin-84 that regulates two previously described coat protein I (COPI) vesicle-mediated pathways did not interfere with SubAB trafficking, indicating that SubAB is exploiting a novel COG/Rab6/COPI-dependent retrograde trafficking pathway.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteína Coat de Complejo I/metabolismo , Proteínas de Escherichia coli/metabolismo , Aparato de Golgi/metabolismo , Subtilisinas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Western Blotting , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Proteína Coat de Complejo I/genética , Electroforesis en Gel de Poliacrilamida , Chaperón BiP del Retículo Endoplásmico , Células HeLa , Humanos , Microscopía Fluorescente , Subunidades de Proteína , Transporte de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Células Vero , Proteínas de Unión al GTP rab/genética
19.
Glycobiology ; 21(12): 1554-69, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21421995

RESUMEN

Cell surface lectin staining, examination of Golgi glycosyltransferases stability and localization, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis were employed to investigate conserved oligomeric Golgi (COG)-dependent glycosylation defects in HeLa cells. Both Griffonia simplicifolia lectin-II and Galanthus nivalus lectins were specifically bound to the plasma membrane glycoconjugates of COG-depleted cells, indicating defects in activity of medial- and trans-Golgi-localized enzymes. In response to siRNA-induced depletion of COG complex subunits, several key components of Golgi glycosylation machinery, including MAN2A1, MGAT1, B4GALT1 and ST6GAL1, were severely mislocalized. MALDI-TOF analysis of total N-linked glycoconjugates indicated a decrease in the relative amount of sialylated glycans in both COG3 KD and COG4 KD cells. In agreement to a proposed role of the COG complex in retrograde membrane trafficking, all types of COG-depleted HeLa cells were deficient in the Brefeldin A- and Sar1 DN-induced redistribution of Golgi resident glycosyltransferases to the endoplasmic reticulum. The retrograde trafficking of medial- and trans-Golgi-localized glycosylation enzymes was affected to a larger extent, strongly indicating that the COG complex regulates the intra-Golgi protein movement. COG complex-deficient cells were not defective in Golgi re-assembly after the Brefeldin A washout, confirming specificity in the retrograde trafficking block. The lobe B COG subcomplex subunits COG6 and COG8 were localized on trafficking intermediates that carry Golgi glycosyltransferases, indicating that the COG complex is directly involved in trafficking and maintenance of Golgi glycosylation machinery.


Asunto(s)
Evolución Molecular , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/análisis , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetinae , Glicosilación , Glicosiltransferasas/metabolismo , Aparato de Golgi/enzimología , Células HeLa , Humanos
20.
Front Genet ; 12: 733048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603392

RESUMEN

Conserved Oligomeric Golgi (COG) is an octameric protein complex that orchestrates intra-Golgi trafficking of glycosylation enzymes. Over a hundred individuals with 31 different COG mutations have been identified until now. The cellular phenotypes and clinical presentations of COG-CDGs are heterogeneous, and patients primarily represent neurological, skeletal, and hepatic abnormalities. The establishment of a cellular COG disease model will benefit the molecular study of the disease, explaining the detailed sequence of the interplay between the COG complex and the trafficking machinery. Moreover, patient fibroblasts are not a good representative of all the organ systems and cell types that are affected by COG mutations. We developed and characterized cellular models for human COG4 mutations, specifically in RPE1 and HEK293T cell lines. Using a combination of CRISPR/Cas9 and lentiviral transduction technologies, both myc-tagged wild-type and mutant (G516R and R729W) COG4 proteins were expressed under the endogenous COG4 promoter. Constructed isogenic cell lines were comprehensively characterized using biochemical, microscopy (superresolution and electron), and proteomics approaches. The analysis revealed similar stability and localization of COG complex subunits, wild-type cell growth, and normal Golgi morphology in all three cell lines. Importantly, COG4-G516R cells demonstrated increased HPA-647 binding to the plasma membrane glycoconjugates, while COG4-R729W cells revealed high GNL-647 binding, indicating specific defects in O- and N-glycosylation. Both mutant cell lines express an elevated level of heparin sulfate proteoglycans. Moreover, a quantitative mass-spectrometry analysis of proteins secreted by COG-deficient cell lines revealed abnormal secretion of SIL1 and ERGIC-53 proteins by COG4-G516R cells. Interestingly, the clinical phenotype of patients with congenital mutations in the SIL1 gene (Marinesco-Sjogren syndrome) overlaps with the phenotype of COG4-G516R patients (Saul-Wilson syndrome). Our work is the first compressive study involving the creation of different COG mutations in different cell lines other than the patient's fibroblast. It may help to address the underlying cause of the phenotypic defects leading to the discovery of a proper treatment guideline for COG-CDGs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA