Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Angew Chem Int Ed Engl ; 63(8): e202312473, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-37987465

RESUMEN

Ruddlesden-Popper-type oxides exhibit remarkable chemical stability in comparison to perovskite oxides. However, they display lower oxygen permeability. We present an approach to overcome this trade-off by leveraging the anisotropic properties of Nd2 NiO4+δ . Its (a,b)-plane, having oxygen diffusion coefficient and surface exchange coefficient several orders of magnitude higher than its c-axis, can be aligned perpendicular to the gradient of oxygen partial pressure by a magnetic field (0.81 T). A stable and high oxygen flux of 1.40 mL min-1 cm-2 was achieved for at least 120 h at 1223 K by a textured asymmetric disk membrane with 1.0 mm thickness under the pure CO2 sweeping. Its excellent operational stability was also verified even at 1023 K in pure CO2 . These findings highlight the significant enhancement in oxygen permeation membrane performance achievable by adjusting the grain orientation. Consequently, Nd2 NiO4+δ emerges as a promising candidate for industrial applications in air separation, syngas production, and CO2 capture under harsh conditions.

2.
Small ; 19(52): e2304380, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649193

RESUMEN

Using colloidal particles as models to understand processes on a smaller scale is a precious approach. Compared to molecules, particles are less defined, but their architecture can be more complex and so is their long-range interaction. One can observe phenomena that are unknown or much more difficult to realize on the molecular level. The current paper focuses on particle-based surfactants and reports on numerous unexpected properties. The main goal is creating an amphiphilic system with responsiveness in surface activity and associated self-organization phenomena depending on applying an external trigger, preferably a physical field. A key step is the creation of a Janus-type particle characterized by two types of dipoles (electric and magnetic) which geometrically stand orthogonal to each other. In a field, one can control which contribution and direction dominate the interparticle interactions. As a result, one can drastically change the system's properties. The features of ferrite-core organosilica-shell particles with grain-like morphology modified by click chemistry are studied in response to spatially isotropic and anisotropic triggers. A highly unusual aggregation-dissolution-reaggregation sequence w as discovered. Using a magnetic field, one can even switch off the amphiphilic properties and use this for the field-triggered breaking of multiphase systems such as emulsions.

3.
Langmuir ; 37(14): 4183-4191, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33787275

RESUMEN

Amphiphiles are unique in their ability to self-assemble in aqueous solution into aggregates. The control of the self-organization of amphiphiles and the live monitoring of the ensuing structure changes by analytical methods are key challenges in this field. One way to gain control and to trigger the self-assembly/disassembly of amphiphiles is to introduce a redox-active constituent to the amphiphile structure, as is the case with metallosurfactants. In this work, we report a cyclic and square-wave voltammetric study on the multi-stimuli-responsive amphiphile 1-(Z)-heptenyl-1'-dimethylammoniummethyl-(3-sulfopropyl)ferrocene (1). We observe separate waves/peaks for molecules of 1 present as the monomer in its electrode-immobilized, its freely diffusing form, and its aggregated form. This allows for a direct monitoring of how the underlying equilibria depend on the concentration and time. Isothermal titration calorimetry indicates that aggregation is entropically and enthalpically favored. Our findings thus illustrate the utility of voltammetric methods for investigating self-assembly processes of redox-active amphiphiles and their redox switchability.

4.
Angew Chem Int Ed Engl ; 59(23): 8902-8906, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32157801

RESUMEN

Amphiphiles alter the energy of surfaces, but the extent of this feature is typically constant. Smart systems with amphiphilicity as a function of an external, physical trigger are desirable. As a trigger, the exposure to a magnetic field, in particular, is attractive because it is not shielded in water. Amphiphiles like surfactants are well known, but the magnetic response of molecules is typically weak. Vice-versa, magnetic particles with strong response to magnetic triggers are fully established in nanoscience, but they are not amphiphilic. In this work colloids with Janus architecture and ultra-small dimensions (25 nm) have been prepared by spatial control over the thiol-yne click modification of organosilica-magnetite core-shell nanoparticles. The amphiphilic properties of these anisotropically modified particles are proven. Finally, a pronounced and reversible change in interfacial stabilization results from the application of a weak (<1 T) magnetic field.

5.
Langmuir ; 35(50): 16514-16520, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31697085

RESUMEN

Next-generation surfactants provide extended functionality apart from their amphiphilic properties. We present two novel metallosurfactants characterized by an N-heterocyclic carbene (NHC) head bearing Cu(I) and Fe(II). An innovative approach for their application in emulsion polymerizations under atom transfer radical polymerization (ATRP) conditions was developed. Thereby the complexes fulfilled the role of emulsifiers, active catalysts, and stabilization agents at once. Polymerization of methyl methacrylate (MMA) yielded stable poly(methyl methacrylate) (PMMA) colloids in water with the catalyst located at the surface of the colloids. The termination of PMMA with a bromine moiety enabled the subsequent copolymerization with styrene via macroinitiation and PMMA-polystyrene (PS) core-shell particles were obtained. Gel permeation chromatography (GPC) and selective gradient NMR experiments revealed a covalent linkage between the PMMA core and the PS shell.

6.
Angew Chem Int Ed Engl ; 58(44): 15620-15625, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31310669

RESUMEN

The leaf is a prime example of a material converting waste (CO2 ) into value with maximum sustainability. As the most important constituent, it contains the coupled photosystems II and I, which are imbedded in the cellular membrane of the chloroplasts. Can key functions of the leaf be packed into soap? We present next-generation surfactants that self-assemble into bilayer vesicles (similar to the cellular membrane), are able to absorb photons of two different visible wavelengths, and exchange excited charge carriers (similar to the photosystems), followed by conversion of CO2 (in analogy to the leaf). The amphiphiles contain five dye molecules as the hydrophobic entity attached exclusively to one hemisphere of a polyhydroxylated fullerene (Janus-type). We herein report on their surfactant, optical, electronic, and catalytic properties. Photons absorbed by the dyes are transferred to the fullerenol head, where they can react with different species such as CO2 to give formic acid.

7.
Beilstein J Org Chem ; 15: 901-905, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019582

RESUMEN

An efficient one-pot synthesis for Janus-type fullerenol derivatives and how to characterize them is reported. This synthesis provides access to asymmetrically substituted fullerenol with five substituents on one pole of the fullerene and polyhydroxylation moieties, mostly ether and hydroxy groups, on the rest of the fullerene core. As substituents a broad variety of primary amines can be used to obtain Janus-type amphiphilic fullerenols in good to excellent yield. These fullerenol amphiphiles can serve as suitable precursors for further reactions resulting in new applications for fullerenols.

8.
Chemistry ; 24(71): 18842-18856, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-29953683

RESUMEN

Surfactants are ubiquitous in cellular membranes, detergents or as emulsification agents. Due to their amphiphilic properties, they cannot only mediate between two domains of very different solvent compatibility like water and organic but also show fascinating self-assembly features resulting in micelles, vesicles, or lyotropic liquid crystals. The current review article highlights some approaches towards the next generation surfactants, for example, those with catalytically active heads. Furthermore, it is shown that amphiphilic properties can be obtained beyond the classical hydrophobic-hydrophilic interplay, for instance with surfactants containing one molecular block with a special shape. Whereas, classical surfactants are static, researchers have become more interested in species that are able to change their properties depending on external triggers. The article discusses examples for surfactants sensitive to chemical (e.g., pH value) or physical triggers (temperature, electric and magnetic fields).

9.
Soft Matter ; 14(35): 7214-7227, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30132500

RESUMEN

Surfactants are not only pivotal constituents in any biological organism in the form of phospholipids, they are also essential for numerous applications benefiting from a large, internal surface, such as in detergents, for emulsification purposes, phase transfer catalysis or even nanoparticle stabilization. A particularly interesting, green class of surfactants contains glycoside head groups. Considering the variability of glycosides, a large number of surfactant isomers become accessible. According to established models in surfactant science such as the packing parameter or the hydrophilic lipophilic balance (HLB), they do not differ from each other and should, thus, have similar properties. Here, we present the preparation of a systematic set of glycoside surfactants and in particular isomers. We investigate to which extent they differ in several key features such as critical aggregation concentration, thermodynamic parameters, etc. Analytical methods like isothermal titration calorimetry (ITC), tensiometry, dynamic light scattering (DLS), small angle-X-ray scattering (SAXS), transmission electron microscopy (TEM) and others were applied. It was found that glycosurfactant isomers vary in their emulsification properties by up to two orders of magnitude. Finally, we have investigated the role of the surfactants in a microemulsion-based technique for the generation of zinc oxide (ZnO) nanoparticles. We found that the choice of the carbohydrate head has a marked effect on the shape of the formed inorganic nanocrystals.


Asunto(s)
Carbohidratos/química , Emulsionantes/química , Interacciones Hidrofóbicas e Hidrofílicas , Tensoactivos/química , Conformación de Carbohidratos , Modelos Moleculares
10.
Small ; 13(34)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28722343

RESUMEN

One efficient method to obtain disordered colloidal packing is to reduce the stability of colloidal particles by adding electrolytes to the colloidal dispersions. But the correct amount of additional electrolytes must be found empirically. Here, the effect of CaCl2 on polystyrene colloidal dispersions is studied, and a link between the amount of CaCl2 and the corresponding glassy colloidal structure is quantitatively built. A threshold concentration of CaCl2 is found by dynamic light scattering. When exceeding this threshold, different nanoparticle oligomers are observed in the dispersions by analytical ultracentrifugation. The second objective is to achieve free-standing samples, which is required for many optical measurements. A universal method is established, using a centrifugal field to produce robust samples by polymerizing coassembled hydrophilic monomers to form a network, which traps the glassy colloidal structures. Photon time of flight measurements shows that the CaCl2 concentration threshold should not be exceeded. Otherwise an optical shortcut may take place. Thus, the work provides a feasible universal route to prepare macroscopic free-standing photonic glasses from electrostatically stabilized nanoparticles, suitable for further optical investigation.

11.
Chemistry ; 23(72): 18129-18133, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-28940413

RESUMEN

Processing of substrates with different solvent compatibility is a persistent problem in homogeneous catalysis, in particular when one starting compound is water soluble and the other is not. A promising concept reported in the literature is micellar catalysis. However, the process of developing catalysts that are surfactants at the same time is still in its early stages. We report the synthesis of a new surfactant system with an N-heterocyclic carbene (NHC) moiety as a head group. Characteristic surfactant properties such as the formation of micelles or liquid crystals is documented. The new surfactant ligand forms coordination compounds with various metals, most importantly Pd2+ , in square planar geometry. In addition, the Pd-NHC compound shows surfactant features, and can be used successfully for C-C cross-coupling reactions (Suzuki, Heck). The boost in catalytic activity by one order of magnitude compared to analogous but non-amphiphilic species is reported.

12.
Langmuir ; 33(43): 11968-11976, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-28990785

RESUMEN

Separation of compounds using liquid chromatography is a process of enormous technological importance. This is true in particular for chiral substances, when one enantiomer has the desired set of properties and the other one may be harmful. The degree of development in liquid chromatography is extremely high, but still there is a lack in understanding based on experimental data how selectivity works on a molecular level directly at the surfaces of a porous host material. We have prepared amino-acid containing organosilica as such host materials. Watching the rotational dynamics of chiral spin probes using electron paramagnetic resonance spectroscopy allows us to differentiate between surface adsorbed and free guest species. Diastereotopic selectivity factors were determined, and the influence of chiral surface group density, chemical character of the surface groups, pore-size, and temperature was investigated. We found higher selectivity values in macroporous solids with a rather rigid organosilica network and at lower temperature, indicating the significant effect of confinement effects. In mesoporous materials features are opposed with regards to the T-dependent behavior. From EPR imaging techniques and the resulting (macroscopic) diffusion coefficients, we could confirm that the correlations found on the microscopic level transform also to the macroscopic behavior. Thus, our study is of value for the development of future chromatography materials by design.

13.
Angew Chem Int Ed Engl ; 56(20): 5475-5479, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28402600

RESUMEN

Gaining external control over self-organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self-assembly is dictated by microphase separation, the hydrophobic effect, and head-group repulsion. It is desirable to supplement surfactants with an added mode of long-range and directional interaction. Magnetic forces are ideal, as they are not shielded in water. We report on surfactants with heads containing tightly bound transition-metal centers. The magnetic moment of the head was varied systematically while keeping shape and charge constant. Changes in the magnetic moment of the head led to notable differences in surface tension, aggregate size, and contact angle, which could also be altered by an external magnetic field. The most astonishing result was that the use of magnetic surfactants as structure-directing agents enabled the formation of porous solids with 12-fold rotational symmetry.

14.
J Am Chem Soc ; 138(9): 3076-84, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26883897

RESUMEN

Colonization of surfaces by microorganisms is an urging problem. In combination with the increasing antibiotic resistance of pathogenic bacteria, severe infections are reported more frequently in medical settings. Therefore, there is a large demand to explore innovative surface coatings that provide intrinsic and highly effective antibacterial activity. Materials containing silver nanoparticles have been developed in the past for this purpose, but this solution has come into criticism due to various disadvantages like notable toxicity against higher organisms, the high price, and low abundance of silver. Here, we introduce a new, sunlight-mediated organosilica nanoparticle (NP) system based on silver-free antibacterial activity. The simultaneous release of nitric oxide (NO) in combination with singlet oxygen and superoxide radicals (O2(•-)) as reactive oxygen species (ROS) leads to the emergence of highly reactive peroxynitrite molecules with significantly enhanced biocidal activity. This special cooperative effect can only be realized, if the ROS-producing moieties and the functional entities releasing NO are spatially separated from each other. In one type of particle, Rose Bengal as an efficient singlet oxygen ((1)O2) producer was covalently bound to SH functionalities applying thiol-ene click chemistry. "Charging" the second type of particles with NO was realized by quantitatively transferring the thiol groups into S-nitrosothiol functionalities. We probed the oxidation power of ROS-NP alone and in combination with NO-NP using sunlight as a trigger. The high antibacterial efficiency of dual-action nanoparticles was demonstrated using disinfection assays with the pathogenic bacterium Pseudomonas aeruginosa.


Asunto(s)
Desinfectantes/farmacología , Desinfección/métodos , Nanopartículas/química , Óxido Nítrico/farmacología , Compuestos de Organosilicio/farmacología , Especies Reactivas de Oxígeno/farmacología , Química Clic , Desinfectantes/química , Sinergismo Farmacológico , Óxido Nítrico/química , Compuestos de Organosilicio/química , Procesos Fotoquímicos , Pseudomonas aeruginosa/efectos de los fármacos , Especies Reactivas de Oxígeno/química , Rosa Bengala/química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Luz Solar
15.
Langmuir ; 32(42): 10920-10927, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27690457

RESUMEN

Nonequilibrium states of matter are arousing huge interest because of the outstanding possibilities to generate unprecedented structures with novel properties. Self-organizing soft matter is the ideal object of study as it unifies periodic order and high dynamics. Compared to settled systems, it becomes vital to realize more complex interaction patterns. A promising and intricate approach is implementing controlled balance between attractive and repulsive forces. We try to answer a fundamental question in surfactant science: How are processes like lyotropic liquid crystals and micellization affected, when headgroup charge becomes so large that repulsive interactions are inevitable? A particular challenge is that size and shape of the surfactant must not change. We could realize the latter by means of new hybrid surfactants with a heteropolyanion head [EW11O39]n- (E = PV, SiIV, BIII; n = 3, 4, 5). Among the unusual self-assembled structures, we report a new type of micelle with dumbbell morphology.

16.
Molecules ; 21(4): 542, 2016 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-27120590

RESUMEN

In this work, we describe the role of the different layers in perovskite solar cells to achieve reproducible, ~16% efficient perovskite solar cells. We used a planar device architecture with PEDOT: PSS on the bottom, followed by the perovskite layer and an evaporated C60 layer before deposition of the top electrode. No high temperature annealing step is needed, which also allows processing on flexible plastic substrates. Only the optimization of all of these layers leads to highly efficient and reproducible results. In this work, we describe the effects of different processing conditions, especially the influence of the C60 top layer on the device performance.


Asunto(s)
Compuestos de Calcio/síntesis química , Óxidos/síntesis química , Compuestos de Calcio/química , Frío , Óxidos/química , Plásticos/química , Energía Solar , Titanio/química
17.
Phys Chem Chem Phys ; 17(24): 15976-88, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-26027653

RESUMEN

Mass transport of molecular compounds through porous solids is a decisive step in numerous, important applications like chromatography or heterogeneous catalysis. It is a multi-scale, hierarchical phenomenon: macrodiffusion (>µm) is influenced, in addition to parameters like grain boundaries and particle packing, by meso-scale (>10 nm, <µm) factors like particle size and the connectivity of pores. More importantly, meso-scale diffusion and macro-scale diffusion are first and foremost determined directly by processes on the molecular scale (<10 nm), which depend on numerous factors like pore-size, interactions of the host with the solid surfaces and with the solvent. Due to the high complexity of the latter and the fact that current analytical techniques enable only limited insights into solvent-filled pores with sufficient spatial and temporal resolution, the knowledge about the molecular origins of diffusive processes in porous materials is still restricted. The main focus of the current paper is on the development of continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy into a tool shedding some new light on molecular diffusion inside mesoporous silica materials differing systematically in pore size and surface functionalities. The advantages of CW-EPR are that its spatial resolution fits ideally to the size of mesopores (2-10 nm), it is fast enough for spotting molecular processes, and any conventional solvent and the porous matrix are EPR silent. Diffusion coefficients have been calculated considering spin exchange occurring from the diffusive collision of radicals, and are compared to complementary analytical techniques like MAS PFG NMR (sensitive for meso-scale) and EPR-imaging (sensitive to macroscale diffusion). Our results show that the choice of surface bound functional groups influences diffusion much stronger than pore-size. There are indications that this is not only due to different guest-surface interactions but also due to an altered mobility within the solvent under confinement.

18.
Angew Chem Int Ed Engl ; 54(4): 1341-6, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25470357

RESUMEN

Significant progress in solar-cell research is currently made by the development of metal-organic perovskites (MOPs) owing to their superior properties, such as high absorption coefficients and effective transport of photogenerated charges. As for other semiconductors, it is expected that the properties of MOPs may be significantly improved by a defined nanostructure. However, their chemical sensitivity (e.g., towards hydrolysis) prohibits the application of methods already known for the synthesis of other nanomaterials. A new and general method for the synthesis of various (CH3NH3)PbI3 nanostructures from a novel single-source precursor is presented. Nanoporous MOP single crystals are obtained by a crystal-to-crystal transformation that is accompanied by spinodal demixing of the triethylene glycol containing precursor structure. Selective binding of a capping agent can be used to tune the particle shape of the MOP nanocrystals.

19.
Angew Chem Int Ed Engl ; 54(36): 10465-9, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26190518

RESUMEN

The existence of more than one functional entity is fundamental for materials, which are desired of fulfilling complementary or succeeding tasks. Whereas it is feasible to make materials with a homogeneous distribution of two different, functional groups, cases are extremely rare exhibiting a smooth transition from one property to the next along a defined distance. We present a new approach leading to high-surface area solids with functional gradients at the microstructural level. Periodically ordered mesoporous organosilicas (PMOs) and aerogel-like monolithic bodies with a maximum density of azide groups were prepared from a novel sol-gel precursor. The controlled and fast conversion of the azide into numerous functions by click chemistry is the prerequisite for the implementation of manifold gradient profiles. Herein we discuss materials with chemical, optical and structural gradients, which are interesting for all applications requiring directionality, for example, chromatography.


Asunto(s)
Química Clic , Nanoporos , Compuestos Orgánicos/química , Dióxido de Silicio/química , Espectroscopía de Resonancia por Spin del Electrón , Microscopía Electrónica de Transmisión , Espectrofotometría Infrarroja
20.
Phys Chem Chem Phys ; 16(22): 11017-23, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24777154

RESUMEN

Research on homogeneous and heterogeneous catalysis is indeed convergent and finds subnanometric particles to be at the heart of catalytically active species. Here, monodisperse gold clusters are deposited from the gas phase onto porous titania generating well-defined model systems and the resulting composite materials exhibit a sharp size-dependency on the number of gold atoms per cluster and exceptionally high-turnovers toward the bromination of 1,4-dimethoxybenzene are observed. This indicates that the deliberate generation of active centres is of utmost importance for the creation of the most "gold-efficient" catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA