Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(29): 15485-15491, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34278404

RESUMEN

Dynamic disorder manifested in fluctuations of charge transfer integrals considerably hinders charge transport in high-mobility organic semiconductors. Accordingly, strategies for suppression of the dynamic disorder are highly desirable. In this study, we suggest a novel promising strategy for suppression of dynamic disorder-tuning the molecular electrostatic potential. Specifically, we show that the intensities of the low-frequency (LF) Raman spectra for crystalline organic semiconductors consisting of π-isoelectronic small molecules (i.e. bearing the same number of π electrons)-benzothieno[3,2-b][1]benzothiophene (BTBT), chrysene, tetrathienoacene (TTA) and naphtho[1,2-b:5,6-b']dithiophene (NDT)-differ significantly, indicating significant differences in the dynamic disorder. This difference is explained by suppression of the dynamic disorder in chrysene and NDT because of stronger intermolecular electrostatic interactions. As a result, guidelines for the increase of the crystal rigidity for the rational design of high-mobility organic semiconductors are suggested.

2.
Langmuir ; 30(10): 2752-60, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24547811

RESUMEN

We present a structural comparison of monolayers on a SiO2 substrate of two asymmetrically substituted sexithiophenes (6T). Molecule 1 consists of 6T with a branched alkyl chain at one end only and shows a crystalline structure. In molecule 2, the bifunctional 6T has in addition at the other end a linear alkyl chain. It displays thermotropic liquid crystalline (LC) behavior. Both compounds form readily single molecular layers from solution. Remarkably, full monolayer coverage can be achieved before multilayer growth starts. LC properties promote preordering near the interface as well as exchange of molecules between the growing domains, thus regulating the domain sizes. As a result, the LC compound 2 forms single-molecule islands with larger domain sizes compared to compound 1. Surface X-ray investigations indicate that the 6T cores are tilted relative to the layer normal. The tilt angle is as large as 54° for compound 2 compared to 28° for compound 1. For molecule 2, interfacial constraints and packing requirements because of the asymmetric substitution cause a rather loosely organized core structure.

3.
ACS Appl Mater Interfaces ; 14(14): 16462-16476, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35357127

RESUMEN

Requirements of speed and simplicity in testing stimulate the development of modern biosensors. Electrolyte-gated organic field-effect transistors (EGOFETs) are a promising platform for ultrasensitive, fast, and reliable detection of biological molecules for low-cost, point-of-care bioelectronic sensing. Biosensitivity of the EGOFET devices can be achieved by modification with receptors of one of the electronic active interfaces of the transistor gate or organic semiconductor surface. Functionalization of the latter gives the advantage in the creation of a planar architecture and compact devices for lab-on-chip design. Herein, we propose a universal, fast, and simple technique based on doctor blading and Langmuir-Schaefer methods for functionalization of the semiconducting surface of C8-BTBT-C8, allowing the fabrication of a large-scale biorecognition layer based on the novel functional derivative of BTBT-containing biotin fragments as a foundation for further biomodification. The fabricated devices are very efficient and operate stably in phosphate-buffered saline solution with high reproducibility of electrical properties in the EGOFET regime. The development of biorecognition properties of the proposed biolayer is based on the streptavidin-biotin interactions between the consecutive layers and can be used for a wide variety of receptors. As a proof-of-concept, we demonstrate the specific response of the BTBT-based biorecognition layer in EGOFETs to influenza A virus (H7N1 strain). The elaborated approach to biorecognition layer formation is appropriate but not limited to aptamer-based receptor molecules and can be further applied for fabricating several biosensors for various analytes on one substrate and paves the way for "electronic tongue" creation.


Asunto(s)
Técnicas Biosensibles , Subtipo H7N1 del Virus de la Influenza A , Técnicas Biosensibles/métodos , Biotina , Electrólitos/química , Reproducibilidad de los Resultados , Tiofenos
4.
Chem Commun (Camb) ; 51(12): 2239-41, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25370184

RESUMEN

Here we report the application of the Electron Spin Resonance (ESR) spectroscopy as a highly sensitive analytical technique for assessment of the electronic quality of organic semiconductor materials, particularly conjugated polymers. It has been shown that different batches of the same conjugated polymer might contain substantially different amounts of radical species which were attributed to structural defects and/or impurities behaving as traps for mobile charge carriers. Good correlations between the concentrations of radicals in various batches of conjugated polymers and their performances in organic solar cells have been revealed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA