Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(19): 195002, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36399755

RESUMEN

The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.45 MeV neutrons from the D(d,n)^{3}He reaction, and the compressed central core B field is estimated to be ∼4.9 kT using the 14.1 MeV secondary neutrons from the D(T,n)^{4}He reactions. The experiments use a 30 kV pulsed-power system to deliver a ∼3 µs current pulse to a solenoidal coil wrapped around a novel high-electrical-resistivity AuTa_{4} hohlraum. Radiation magnetohydrodynamic simulations are consistent with the experiment.

2.
Phys Rev Lett ; 124(21): 215001, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32530650

RESUMEN

We present the first local, quantitative measurements of ion current filamentation and magnetic field amplification in interpenetrating plasmas, characterizing the dynamics of the ion Weibel instability. The interaction of a pair of laser-generated, counterpropagating, collisionless, supersonic plasma flows is probed using optical Thomson scattering (TS). Analysis of the TS ion-feature revealed anticorrelated modulations in the density of the two ion streams at the spatial scale of the ion skin depth c/ω_{pi}=120 µm, and a correlated modulation in the plasma current. The inferred current profile implies a magnetic field amplitude ∼30±6 T, corresponding to ∼1% of the flow kinetic energy, indicating that magnetic trapping is the dominant saturation mechanism.

3.
Phys Rev Lett ; 122(22): 225001, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31283266

RESUMEN

The creation and disruption of inertially collimated plasma flows are investigated through experiment, simulation, and analytical modeling. Supersonic plasma jets are generated by laser-irradiated plastic cones and characterized by optical interferometry measurements. Targets are magnetized with a tunable B field with strengths of up to 5 T directed along the axis of jet propagation. These experiments demonstrate a hitherto unobserved phenomenon in the laboratory, the magnetic disruption of inertially confined plasma jets. This occurs due to flux compression on axis during jet formation and can be described using a Lagrangian-cylinder model of plasma evolution implementing finite resistivity. The basic physical mechanisms driving the dynamics of these systems are described by this model and then compared with two-dimensional radiation-magnetohydrodynamic simulations. Experimental, computational, and analytical results discussed herein suggest that contemporary models underestimate the electrical conductivity necessary to drive the amount of flux compression needed to explain observations of jet disruption.

4.
Phys Rev Lett ; 118(1): 015001, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28106452

RESUMEN

We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85%-87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

5.
Phys Rev Lett ; 118(13): 134801, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28409970

RESUMEN

We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of ∼5×10^{18} W/cm^{2} are focused into plasmas with electron densities of ∼1×10^{19} cm^{-3}, they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV energies and causes those electrons to emit x rays. The measured x-ray spectra are fit with a synchrotron spectrum with a critical energy of 10-20 keV, and 2D particle-in-cell simulations were used to model the acceleration and radiation of the electrons in our experimental conditions.

6.
Phys Rev Lett ; 118(18): 185003, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28524679

RESUMEN

A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000 km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.

7.
Phys Rev Lett ; 116(20): 205001, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27258871

RESUMEN

We report the first experimental demonstration of a plasma wave plate based on laser-induced birefringence. An elliptically polarized input was converted into a nearly ideal circularly polarized beam using an optical system composed of a second laser beam and a plasma. The results are in excellent agreement with linear theory and three-dimensional simulations up to phase delays exceeding π/4, thus establishing the feasibility of laser-plasma photonic devices that are ultrafast, damage-resistant, and easily tunable.

8.
Phys Rev Lett ; 115(5): 055004, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26274427

RESUMEN

Ultrarelativistic-energy electron ring structures have been observed from laser-wakefield acceleration experiments in the blowout regime. These electron rings had 170-280 MeV energies with 5%-25% energy spread and ∼10 pC of charge and were observed over a range of plasma densities and compositions. Three-dimensional particle-in-cell simulations show that laser intensity enhancement in the wake leads to sheath splitting and the formation of a hollow toroidal pocket in the electron density around the wake behind the first wake period. If the laser propagates over a distance greater than the ideal dephasing length, some of the dephasing electrons in the second period can become trapped within the pocket and form an ultrarelativistic electron ring that propagates in free space over a meter-scale distance upon exiting the plasma. Such a structure acts as a relativistic potential well, which has applications for accelerating positively charged particles such as positrons.

9.
Phys Rev Lett ; 111(23): 235004, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24476282

RESUMEN

We present the first measurements of the angular dependence of the betatron x-ray spectrum produced by electrons inside the cavity of a laser-wakefield accelerator. Electrons accelerated up to 300 MeV energies produce a beam of broadband, forward-directed betatron x-ray radiation extending up to 80 keV. The angular resolved spectrum from an image plate-based spectrometer with differential filtering provides data in a single laser shot. The simultaneous spectral and spatial x-ray analysis allows for a three-dimensional reconstruction of electron trajectories with micrometer resolution, and we find that the angular dependence of the x-ray spectrum is showing strong evidence of anisotropic electron trajectories.

10.
Phys Rev E ; 106(5-2): 055205, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36559494

RESUMEN

The collisionless ion-Weibel instability is a leading candidate mechanism for the formation of collisionless shocks in many astrophysical systems, where the typical distance between particle collisions is much larger than the system size. Multiple laboratory experiments aimed at studying this process utilize laser-driven (I≳10^{15} W/cm^{2}), counterstreaming plasma flows (V≲2000 km/s) to create conditions unstable to Weibel-filamentation and growth. This technique intrinsically produces temporally varying plasma conditions at the midplane of the interaction where Weibel-driven B fields are generated and studied. Experiments discussed herein demonstrate robust formation of Weibel-driven B fields under multiple plasma conditions using CH, Al, and Cu plasmas. Linear theory based on benchmarked radiation-hydrodynamic FLASH calculations is compared with Fourier analyses of proton images taken ∼5-6 linear growth times into the evolution. The new analyses presented here indicate that the low-density, high-velocity plasma-conditions present during the first linear-growth time (∼300-500 ps) sets the spectral characteristics of Weibel filaments during the entire evolution. It is shown that the dominant wavelength (∼300µm) at saturation persists well into the nonlinear phase, consistent with theory under these experimental conditions. However, estimates of B-field strength, while difficult to determine accurately due to the path-integrated nature of proton imaging, are shown to be in the ∼10-30 T range, an order of magnitude above the expected saturation limit in homogenous plamas but consistent with enhanced B fields in the midplane due to temporally varying plasma conditions in experiments.

11.
Phys Rev Lett ; 107(4): 045001, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21867013

RESUMEN

Laser wakefield acceleration of electrons holds great promise for producing ultracompact stages of GeV scale, high-quality electron beams for applications such as x-ray free electron lasers and high-energy colliders. Ultrahigh intensity laser pulses can be self-guided by relativistic plasma waves (the wake) over tens of vacuum diffraction lengths, to give >1 GeV energy in centimeter-scale low density plasmas using ionization-induced injection to inject charge into the wake even at low densities. By restricting electron injection to a distinct short region, the injector stage, energetic electron beams (of the order of 100 MeV) with a relatively large energy spread are generated. Some of these electrons are then further accelerated by a second, longer accelerator stage, which increases their energy to ∼0.5 GeV while reducing the relative energy spread to <5% FWHM.

12.
Rev Sci Instrum ; 92(4): 043543, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243465

RESUMEN

Diagnosing plasma magnetization in inertial confinement fusion implosions is important for understanding how magnetic fields affect implosion dynamics and to assess plasma conditions in magnetized implosion experiments. Secondary deuterium-tritium (DT) reactions provide two diagnostic signatures to infer neutron-averaged magnetization. Magnetically confining fusion tritons from deuterium-deuterium (DD) reactions in the hot spot increases their path lengths and energy loss, leading to an increase in the secondary DT reaction yield. In addition, the distribution of magnetically confined DD-triton is anisotropic, and this drives anisotropy in the secondary DT neutron spectra along different lines of sight. Implosion parameter space as well as sensitivity to the applied B-field, fuel ρR, temperature, and hot-spot shape will be examined using Monte Carlo and 2D radiation-magnetohydrodynamic simulations.

13.
Phys Rev Lett ; 104(10): 105001, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20366433

RESUMEN

We observe relativistic modifications to the Thomson scattering spectrum in a traditionally classical regime: v(osc)/c = eE(0)/cmomega(0) << 1 and T(e) < 1 keV. The modifications result from scattering off electron-plasma fluctuations with relativistic phase velocities. Normalized phase velocities v/c between 0.03 and 0.12 have been achieved in a N(2) gas-jet plasma by varying the plasma density from 3 x 10(18) cm(-3) to 7 x 10(19) cm(-3) and electron temperature between 85 and 700 eV. For these conditions, the complete temporally resolved Thomson scattering spectrum including the electron and ion features has been measured. A relativistic treatment of the Thomson scattering form factor shows excellent agreement with the experimental data.

14.
Phys Rev Lett ; 105(10): 105003, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20867526

RESUMEN

The concepts of matched-beam, self-guided laser propagation and ionization-induced injection have been combined to accelerate electrons up to 1.45 GeV energy in a laser wakefield accelerator. From the spatial and spectral content of the laser light exiting the plasma, we infer that the 60 fs, 110 TW laser pulse is guided and excites a wake over the entire 1.3 cm length of the gas cell at densities below 1.5 × 10(18) cm(-3). High-energy electrons are observed only when small (3%) amounts of CO2 gas are added to the He gas. Computer simulations confirm that it is the K-shell electrons of oxygen that are ionized and injected into the wake and accelerated to beyond 1 GeV energy.

15.
Phys Rev Lett ; 103(21): 215006, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-20366048

RESUMEN

A laser wakefield acceleration study has been performed in the matched, self-guided, blowout regime producing 720 +/- 50 MeV quasimonoenergetic electrons with a divergence Deltatheta_{FWHM} of 2.85 +/- 0.15 mrad using a 10 J, 60 fs 0.8 microm laser. While maintaining a nearly constant plasma density (3 x 10{18} cm{-3}), the energy gain increased from 75 to 720 MeV when the plasma length was increased from 3 to 8 mm. Absolute charge measurements indicate that self-injection of electrons occurs when the laser power P exceeds 3 times the critical power P{cr} for relativistic self-focusing and saturates around 100 pC for P/P{cr} > 5. The results are compared with both analytical scalings and full 3D particle-in-cell simulations.

16.
Sci Rep ; 8(1): 11010, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30030516

RESUMEN

Betatron radiation from laser wakefield accelerators is an ultrashort pulsed source of hard, synchrotron-like x-ray radiation. It emanates from a centimetre scale plasma accelerator producing GeV level electron beams. In recent years betatron radiation has been developed as a unique source capable of producing high resolution x-ray images in compact geometries. However, until now, the short pulse nature of this radiation has not been exploited. This report details the first experiment to utilize betatron radiation to image a rapidly evolving phenomenon by using it to radiograph a laser driven shock wave in a silicon target. The spatial resolution of the image is comparable to what has been achieved in similar experiments at conventional synchrotron light sources. The intrinsic temporal resolution of betatron radiation is below 100 fs, indicating that significantly faster processes could be probed in future without compromising spatial resolution. Quantitative measurements of the shock velocity and material density were made from the radiographs recorded during shock compression and were consistent with the established shock response of silicon, as determined with traditional velocimetry approaches. This suggests that future compact betatron imaging beamlines could be useful in the imaging and diagnosis of high-energy-density physics experiments.

17.
Phys Rev E ; 95(3-1): 033208, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28415195

RESUMEN

We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (∼0.2cm^{3}) indicates that it is possible to achieve several tens of Tesla.

18.
Rev Sci Instrum ; 87(11): 11D831, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910335

RESUMEN

Ultra-intense short pulse lasers incident on solid targets (e.g., thin Au foils) produce well collimated, broad-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields, and density gradients in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built [H. Chen et al., Rev. Sci. Instrum. 81, 10D314 (2010)] for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.

19.
Rev Sci Instrum ; 85(11): 11E812, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430377

RESUMEN

Creating magnetized jets in the laboratory is relevant to studying young stellar objects, but generating these types of plasmas within the laboratory setting has proven to be challenging. Here, we present the construction of a solenoid designed to produce an axial magnetic field with strengths in the gap of up to 5 T. This novel design was a compact 75 mm × 63 mm × 88 mm, allowing it to be placed in the Titan target chamber. It was robust, surviving over 50 discharges producing fields ≲ 5 T, reaching a peak magnetic field of 12.5 T.


Asunto(s)
Campos Magnéticos , Gases em Plasma
20.
Rev Sci Instrum ; 83(10): 10E348, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23127005

RESUMEN

Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 µm in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 µm at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 µm spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 µm, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20±4 at up to 200 eV electron temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA