Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochem Biophys Res Commun ; 568: 180-185, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34247143

RESUMEN

XIAP is multi-functional protein which regulates apoptosis acting as a direct caspase inhibitor. It is overexpressed in cancer cells, where it antagonizes the pro-apoptotic action of chemotherapeutics, and therefore it has become an important target for the treatment of cancer. In cells undergoing programmed cell death, the pro-apoptotic protein Smac is released by the mitochondria and binds to XIAP, thereby blocking caspase inhibition. Thus, Smac is considered a master regulator of apoptosis in mammals. In this regard, several Smac mimetic compounds have been developed to inhibit XIAP activity in cancer tissues. These compounds have shown low efficacy, partly due to the lack of structural knowledge of the XIAP-Smac interaction. In this work, through SEC-MALS and circular dichroism, we provide the first biophysical characterization of the interaction between the full-length form of XIAP and Smac, determining the stoichiometry of the complex and providing important information to develop more effective XIAP inhibitors.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteínas Reguladoras de la Apoptosis/química , Humanos , Proteínas Mitocondriales/química , Neoplasias/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Multimerización de Proteína , Proteína Inhibidora de la Apoptosis Ligada a X/química
2.
Biochem Biophys Res Commun ; 570: 82-88, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34274850

RESUMEN

The lack of a simple, fast and efficient method for protein delivery is limiting the widespread application of in-cell experiments, which are crucial for understanding the cellular function. We present here an innovative strategy to deliver proteins into both prokaryotic and eukaryotic cells, exploiting thermal vesiculation. This method allows to internalize substantial amounts of proteins, with different molecular weight and conformation, without compromising the structural properties and cell viability. Characterizing proteins in a physiological environment is essential as the environment can dramatically affect the conformation and dynamics of biomolecules as shown by in-cell EPR spectra vs those acquired in buffer solution. Considering its versatility, this method opens the possibility to scientists to study proteins directly in living cells through a wide range of techniques.


Asunto(s)
Bioquímica/métodos , Proteínas/administración & dosificación , Bases de Datos de Proteínas , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Pichia/metabolismo , Proteínas/química
4.
Front Mol Biosci ; 11: 1376411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948077

RESUMEN

Introduction: Alzheimer's disease (AD) is a progressive debilitating neurological disorder representing the most common neurodegenerative disease worldwide. Although the exact pathogenic mechanisms of AD remain unresolved, the presence of extracellular amyloid-ß peptide 1-42 (Aß1-42) plaques in the parenchymal and cortical brain is considered one of the hallmarks of the disease. Methods: In this work, we investigated the Aß1-42 fibrillogenesis timeline up to 48 h of incubation, providing morphological and chemo-structural characterization of the main assemblies formed during the aggregation process of Aß1-42, by atomic force microscopy (AFM) and surface enhanced Raman spectroscopy (SERS), respectively. Results: AFM topography evidenced the presence of characteristic protofibrils at early-stages of aggregation, which form peculiar macromolecular networks over time. SERS allowed to track the progressive variation in the secondary structure of the aggregation species involved in the fibrillogenesis and to determine when the ß-sheet starts to prevail over the random coil conformation in the aggregation process. Discussion: Our research highlights the significance of investigating the early phases of fibrillogenesis to better understand the molecular pathophysiology of AD and identify potential therapeutic targets that may prevent or slow down the aggregation process.

5.
Autoimmunity ; 56(1): 2259123, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37710966

RESUMEN

As a result of the spread of SARS-CoV-2, a global pandemic was declared. Indiscriminate COVID-19 vaccination has been extended to include age groups and naturally immune people with minimal danger of suffering serious complications due to COVID-19. Solid immuno-histopathological evidence demonstrates that the COVID-19 genetic vaccines can display a wide distribution within the body, affecting tissues that are terminally differentiated and far away from the injection site. These include the heart and brain, which may incur in situ production of spike protein eliciting a strong autoimmunological inflammatory response. Due to the fact that every human cell which synthesises non-self antigens, inevitably becomes the target of the immune system, and since the human body is not a strictly compartmentalised system, accurate pharmacokinetic and pharmacodynamic studies are needed in order to determine precisely which tissues can be harmed. Therefore, our article aims to draw the attention of the scientific and regulatory communities to the critical need for biodistribution studies for the genetic vaccines against COVID-19, as well as for rational harm-benefit assessments by age group.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , Distribución Tisular , SARS-CoV-2 , Encéfalo
6.
Transl Neurodegener ; 12(1): 35, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438825

RESUMEN

BACKGROUND: The current diagnosis of Alzheimer's disease (AD) is based on a series of analyses which involve clinical, instrumental and laboratory findings. However, signs, symptoms and biomarker alterations observed in AD might overlap with other dementias, resulting in misdiagnosis. METHODS: Here we describe a new diagnostic approach for AD which takes advantage of the boosted sensitivity in biomolecular detection, as allowed by seed amplification assay (SAA), combined with the unique specificity in biomolecular recognition, as provided by surface-enhanced Raman spectroscopy (SERS). RESULTS: The SAA-SERS approach supported by machine learning data analysis allowed efficient identification of pathological Aß oligomers in the cerebrospinal fluid of patients with a clinical diagnosis of AD or mild cognitive impairment due to AD. CONCLUSIONS: Such analytical approach can be used to recognize disease features, thus allowing early stratification and selection of patients, which is fundamental in clinical treatments and pharmacological trials.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Espectrometría Raman , Enfermedad de Alzheimer/diagnóstico , Aprendizaje Automático , Semillas
7.
Front Biosci (Schol Ed) ; 14(3): 22, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36137977

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder, resulting in memory loss, cognitive decline, bodily function impairment, and finally death. The growing number of people suffering from AD increasingly urges the development of effective early diagnosis and monitoring techniques. Here, we review the most recent developments in the field of Raman-based techniques, which have shown a significant potential in identifying AD by detecting specific biomarkers in biological fluids, as well as in providing fundamental insights into key molecules involved in the disease progression or in the analysis of histological specimens of patients with AD. These techniques comprise spontaneous and resonant Raman spectroscopies, exploit plasmon- or fiber- enhanced effects, such as surface-, tip- or fiber- enhanced Raman spectroscopies, or involve non-linear techniques like coherent Raman scattering. The scientific efforts employed up to now as well as the rapid technological advancements in optical detection instruments (spectrometers, lasers, substrates for analysis, etc.) and the diffusion of advanced data processing methods suggest a leading role of Raman techniques in the perspective of a preclinical or clinical detection of AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Biomarcadores , Progresión de la Enfermedad , Humanos , Espectrometría Raman/métodos
8.
Med Hypotheses ; 157: 110702, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34666261

RESUMEN

Multiple Sclerosis (MS) is a demyelinating autoimmune disease in which autoreactive T lymphocytes infiltrate the central nervous system (CNS) and react against antigens derived from proteins of the myelin sheath. The reason why T lymphocytes recognize certain myelin antigens as exogenous, activating the autoimmune response, remains unknown and represents the key to understand the pathogenesis of MS. Neurons are characterized by an elevated glycolytic metabolism. Methylglyoxal (MG) is a highly reactive α-oxoaldehyde spontaneously formed as a by-product of glycolysis, and it reacts with proteins, nucleotides and phospholipids forming stable adducts called advanced glycation end-products (AGEs). Several studies demonstrate that MG-derived AGEs accumulate in the plasma and brain of MS patients. Furthermore, there are evidences that post-myelinated oligodendrocytes, the myelin-forming glial cells, increase their glycolytic metabolism to maintain their survival and functions, likely explaining the progressive accumulation of MG in MS lesions. The hypothesis proposed here is that the MG-derived AGEs, accumulated on the proteins composing the myelin sheath, are responsible for the altered antigen presentation process, mimicking exogenous antigens and triggering the autoimmune response. If this hypothesis will be experimentally confirmed a new pathogenic mechanism of MS will be identified.


Asunto(s)
Esclerosis Múltiple , Vaina de Mielina , Antígenos , Autoinmunidad , Humanos , Linfocitos T
9.
Redox Biol ; 30: 101421, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31931282

RESUMEN

Methylglyoxal (MG) is a highly reactive aldehyde spontaneously formed in human cells mainly as a by-product of glycolysis. Such endogenous metabolite reacts with proteins, nucleotides and lipids forming advanced glycation end-products (AGEs). MG binds to arginine, lysine and cysteine residues of proteins causing the formation of stable adducts that can interfere with protein function. Among the proteins affected by glycation, MG has been found to react with superoxide dismutase 1 (SOD1), a fundamental anti-oxidant enzyme that is abundantly expressed in neurons. Considering the high neuronal susceptibility to MG-induced oxidative stress, we sought to investigate by mass spectrometry and NMR spectroscopy which are the structural modifications induced on SOD1 by the reaction with MG. We show that MG reacts preferentially with the disulfide-reduced, demetallated form of SOD1, gradually causing its unfolding, and to a lesser extent, with the intermediate state of maturation - the reduced, zinc-bound homodimer - causing its gradual monomerization. These results suggest that MG could impair the correct maturation of SOD1 in vivo, thus both increasing cellular oxidative stress and promoting the cytotoxic misfolding and aggregation process of SOD1.


Asunto(s)
Piruvaldehído/metabolismo , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , Sitios de Unión , Glucólisis , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Moleculares , Estrés Oxidativo , Unión Proteica , Estructura Secundaria de Proteína , Desplegamiento Proteico
10.
Redox Biol ; 21: 101102, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30654299

RESUMEN

Cadmium is a toxic pollutant that in recent decades has become more widespread in the environment due to anthropogenic activities, significantly increasing the risk of exposure. Concurrently, a continually growing body of research has begun to enumerate the harmful effects that this heavy metal has on human health. Consequently, additional research is required to better understand the mechanism and effects of cadmium at the molecular level. The main mechanism of cadmium toxicity is based on the indirect induction of severe oxidative stress, through several processes that unbalance the anti-oxidant cellular defence system, including the displacement of metals such as zinc from its native binding sites. Such mechanism was thought to alter the in vivo enzymatic activity of SOD1, one of the main antioxidant proteins of many tissues, including the central nervous system. SOD1 misfolding and aggregation is correlated with cytotoxicity in neurodegenerative diseases such as amyotrophic lateral sclerosis. We assessed the effect of cadmium on SOD1 folding and maturation pathway directly in human cells through in-cell NMR. Cadmium does not directly bind intracellular SOD1, instead causes the formation of its intramolecular disulfide bond in the zinc-bound form. Metallothionein overexpression is strongly induced by cadmium, reaching NMR-detectable levels. The intracellular availability of zinc modulates both SOD1 oxidation and metallothionein overexpression, strengthening the notion that zinc-loaded metallothioneins help maintaining the redox balance under cadmium-induced acute stress.


Asunto(s)
Cadmio/química , Cadmio/toxicidad , Espectroscopía de Resonancia Magnética , Superóxido Dismutasa-1/antagonistas & inhibidores , Superóxido Dismutasa-1/química , Disulfuros/química , Células HEK293 , Humanos , Modelos Biológicos , Oxidación-Reducción , Estrés Oxidativo , Superóxido Dismutasa-1/genética , Zinc/química , Zinc/metabolismo
11.
IUCrJ ; 6(Pt 5): 948-957, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31576227

RESUMEN

The X-chromosome-linked inhibitor of apoptosis protein (XIAP) is a multidomain protein whose main function is to block apoptosis by caspase inhibition. XIAP is also involved in other signalling pathways, including NF-κB activation and copper homeostasis. XIAP is overexpressed in tumours, potentiating cell survival and resistance to chemotherapeutics, and has therefore become an important target for the treatment of malignancy. Despite the fact that the structure of each single domain is known, the conformation of the full-length protein has never been determined. Here, the first structural model of the full-length XIAP dimer, determined by an integrated approach using nuclear magnetic resonance, small-angle X-ray scattering and electron paramagnetic resonance data, is presented. It is shown that XIAP adopts a compact and relatively rigid conformation, implying that the spatial arrangement of its domains must be taken into account when studying the interactions with its physiological partners and in developing effective inhibitors.

12.
Sci Rep ; 7(1): 16630, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192194

RESUMEN

The X-chromosome linked inhibitor of apoptosis (XIAP) is a multidomain metalloprotein involved in caspase inhibition and in copper homeostasis. It contains three zinc-binding baculoviral IAP repeats (BIR) domains, which are responsible for caspase interaction. Recently, it has been suggested that the BIR domains can bind copper, however high resolution data on such interaction is missing. Here we characterize by NMR the structural properties of BIR1 in solution, and the effects of its interaction with copper both in vitro and in physiological environments. BIR1 is dimeric in solution, consistent with the X-ray structure. Cysteine 12, located in the unfolded N-terminal region, has a remarkably low redox potential, and is prone to oxidation even in reducing physiological environments. Interaction of BIR1 with copper(II) results in the oxidation of cysteine 12, with the formation of either an intermolecular disulfide bond between two BIR1 molecules or a mixed disulfide bond with glutathione, whereas the zinc binding site is not affected by the interaction.


Asunto(s)
Cobre/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína Inhibidora de la Apoptosis Ligada a X/química , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Algoritmos , Sitios de Unión , Células Cultivadas , Cobre/química , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Modelos Teóricos , Conformación Molecular , Mutación , Oxidación-Reducción , Unión Proteica , Soluciones , Relación Estructura-Actividad , Proteína Inhibidora de la Apoptosis Ligada a X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA