Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 26(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800024

RESUMEN

The endocannabinoid system (ECS) is involved in the modulation of several basic biological processes, having widespread roles in neurodevelopment, neuromodulation, immune response, energy homeostasis and reproduction. In the adult central nervous system (CNS) the ECS mainly modulates neurotransmitter release, however, a substantial body of evidence has revealed a central role in regulating neurogenesis in developing and adult CNS, also under pathological conditions. Due to the complexity of investigating ECS functions in neural progenitors in vivo, we tested the suitability of the ST14A striatal neural progenitor cell line as a simplified in vitro model to dissect the role and the mechanisms of ECS-regulated neurogenesis, as well as to perform ECS-targeted pharmacological approaches. We report that ST14A cells express various ECS components, supporting the presence of an active ECS. While CB1 and CB2 receptor blockade did not affect ST14A cell number, exogenous administration of the endocannabinoid 2-AG and the synthetic CB2 agonist JWH133 increased ST14A cell proliferation. Phospholipase C (PLC), but not PI3K pharmacological blockade negatively modulated CB2-induced ST14A cell proliferation, suggesting that a PLC pathway is involved in the steps downstream to CB2 activation. On the basis of our results, we propose ST14A neural progenitor cells as a useful in vitro model for studying ECS modulation of neurogenesis, also in prospective in vivo pharmacological studies.


Asunto(s)
Moduladores de Receptores de Cannabinoides/farmacología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/fisiología , Receptores de Cannabinoides/metabolismo , Animales , Cannabinoides/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Cuerpo Estriado/citología , Estrenos/farmacología , Células-Madre Neurales/fisiología , Neurogénesis/efectos de los fármacos , Pirrolidinonas/farmacología , Ratas , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/genética , Receptores de Cannabinoides/genética , Fosfolipasas de Tipo C/antagonistas & inhibidores
2.
Environ Health ; 16(1): 130, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29212512

RESUMEN

CORRECTION: After publication of the article [1], it has been brought to our attention that the thirteenth author of this article has had their name spelt incorrectly. In the original article the spelling "Laura Rizzir" was used. In fact the correct spelling should be "Laura Rizzi".

3.
Environ Health ; 14: 54, 2015 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-26092037

RESUMEN

A multidisciplinary group of experts gathered in Parma Italy for a workshop hosted by the University of Parma, May 16-18, 2014 to address concerns about the potential relationship between environmental metabolic disrupting chemicals, obesity and related metabolic disorders. The objectives of the workshop were to: 1. Review findings related to the role of environmental chemicals, referred to as "metabolic disruptors", in obesity and metabolic syndrome with special attention to recent discoveries from animal model and epidemiology studies; 2. Identify conclusions that could be drawn with confidence from existing animal and human data; 3. Develop predictions based on current data; and 4. Identify critical knowledge gaps and areas of uncertainty. The consensus statements are intended to aid in expanding understanding of the role of metabolic disruptors in the obesity and metabolic disease epidemics, to move the field forward by assessing the current state of the science and to identify research needs on the role of environmental chemical exposures in these diseases. We propose broadening the definition of obesogens to that of metabolic disruptors, to encompass chemicals that play a role in altered susceptibility to obesity, diabetes and related metabolic disorders including metabolic syndrome.


Asunto(s)
Conferencias de Consenso como Asunto , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Congresos como Asunto , Diabetes Mellitus/inducido químicamente , Humanos , Italia , Síndrome Metabólico/inducido químicamente , Obesidad/inducido químicamente
4.
Fish Physiol Biochem ; 39(5): 1287-96, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23504102

RESUMEN

Cannabinoids, the bioactive constituents of Cannabis sativa, and endocannabinoids, among which the most important are anandamide and 2-arachidonoylglycerol, control various biological processes by binding to specific G protein-coupled receptors, namely CB1 and CB2 cannabinoid receptors. While a vast amount of information on the mammalian endocannabinoid system does exist, few data have been reported on bony fish. In the goldfish, Carassius auratus, the CB1 receptor has been cloned and its distribution has been analyzed in the retina, brain and gonads, while CB2 had not yet been isolated. In the present paper, we cloned the goldfish CB2 receptor and show that it presents a quite high degree of amino acid identity with zebrafish Danio rerio CB2A and CB2B receptors, while the percentage of identity is lower with the puffer fish Fugu rubripes CB2, as also confirmed by the phylogenetic analysis. The sequence identity becomes much lower when comparing the goldfish and the mammalian CB2 sequences; as for other species, goldfish CB2 and CB1 amino acid sequences share moderate levels of identity. Western-blotting analysis shows the CB2 receptor as two major bands of about 53 and 40 kDa and other faint bands with apparent molecular masses around 70, 57 and 55 kDa. Since the distribution of a receptor could give information on its physiological role, we evaluated and compared CB1 and CB2 mRNA expression in different goldfish organs by means of qReal-Time PCR. Our results show that both CB1 and CB2 receptors are widely expressed in the goldfish, displaying some tissue specificities, thus opening the way for further functional studies on bony fish and other nonmammalian vertebrates.


Asunto(s)
Carpa Dorada/metabolismo , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/aislamiento & purificación , Receptor Cannabinoide CB2/metabolismo , Animales , Secuencia de Bases , Western Blotting/veterinaria , Clonación Molecular , Análisis por Conglomerados , Cartilla de ADN/genética , Perfilación de la Expresión Génica/veterinaria , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética , Análisis de Secuencia de ADN/veterinaria , Homología de Secuencia , Especificidad de la Especie
5.
Gen Comp Endocrinol ; 174(1): 30-5, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21855545

RESUMEN

Based on pharmacological, behavioral and neuroanatomical studies, the endocannabinoids appear to be pivotal in some important neuroendocrine regulations of both vertebrates and invertebrates. Interestingly, a well developed endocannabinoid system was recently demonstrated by us in different bonyfish brain areas which control reproduction, energy balance and stress. Fish in particular are very sensitive to different types of stressors which can heavily affect their reproductive activity and negatively reverberate on aquaculture. Since recent new data have been reported on endocrine disruptors (EDs) impact on zebrafish receptor CB1 expression, in the present research we have investigated the response of the endocannabinoid system to acute treatment with an environmental stressor such as the xenoestrogen nonylphenol (4NP) in the brain and peripheral tissues of the goldfish Carassius auratus. First of all the estrogenic effects induced by 4NP were demonstrated by a dose-dependent increase of plasma levels and gene expression of the biomarker vitellogenin, then changes in cannabinoid receptors and anandamide degradative enzyme, the fatty acid amide hydrolase (FAAH), were analysed by means of Real Time PCR. As the exposure to EDs may lead to an activation of estrogen receptors and affects the Aromatase (AROB) transcription, changes in mRNA levels for ER subtypes and AROB were also evaluated. Our results confirm in goldfish the effect of 4NP on ERα and ERß1 receptors and point out a different sensitivity of CB1 and CB2 for this compound, suggesting distinct roles of these cannabinoid receptors in some adaptive processes to contrast stress induced by xenoestrogen exposure.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Carpa Dorada/metabolismo , Fenoles/toxicidad , Receptores de Estrógenos/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Aromatasa/genética , Aromatasa/metabolismo , Ensayo de Inmunoadsorción Enzimática , Carpa Dorada/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo , Receptores de Estrógenos/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo
6.
J Steroid Biochem Mol Biol ; 178: 322-332, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29410257

RESUMEN

Recent studies suggest that exposure to some plasticizers, such as Bisphenol A (BPA), play a role in endocrine/metabolic dispruption and can affect lipid accumulation in adipocytes. Here, we investigated the adipogenic activity and nuclear receptor interactions of four plasticizers approved for the manufacturing of food-contact materials (FCMs) and currently considered safer alternatives. Differentiating 3T3-L1 mouse preadipocytes were exposed to scalar concentrations (0.01-25 µM) of DiNP (Di-iso-nonyl-phthalate), DiDP (Di-iso-decyl-phthalate), DEGDB (Diethylene glycol dibenzoate), or TMCP (Tri-m-cresyl phosphate). Rosiglitazone, a well-known pro-adipogenic peroxisome proliferator activated receptor gamma (PPARγ) agonist, and the plasticizer BPA were included as reference compounds. All concentrations of plasticizers were able to enhance lipid accumulation, with TMCP being the most effective one. Accordingly, when comparing in silico the ligand binding efficiencies to the nuclear receptors PPARγ and retinoid-X-receptor-alpha (RXRα), TMPC displayed the highest affinity to both receptors. Differently from BPA, the four plasticizers were most effective in enhancing lipid accumulation when added in the mid-late phase of differentiation, thus suggesting the involvement of different intracellular signalling pathways. In line with this, TMCP, DiDP, DiNP and DEGDB were able to activate PPARγ in transient transfection assays, while previous studies demonstrated that BPA acts mainly through other nuclear receptors. qRT-PCR studies showed that all plasticizers were able to increase the expression of CCAAT/enhancer binding protein ß (Cebpß) in the early steps of adipogenesis, and the adipogenesis master gene Pparγ2 in the middle phase, with very similar efficacy to that of Rosiglitazone. In addition, TMCP was able to modulate the expression of both Fatty Acid Binding Protein 4/Adipocyte Protein 2 (Fabp4/Ap2) and Lipoprotein Lipase (Lpl) transcripts in the late phase of adipogenesis. DEGDB increased the expression of Lpl only, while the phthalate DiDP did not change the expression of either late-phase marker genes Fabp4 and Lpl. Taken together, our results suggest that exposure to low, environmentally relevant doses of the plasticizers DiNP, DiDP, DEGDB and TMCP increase lipid accumulation in 3T3-L1 adipocytes, an effect likely mediated through activation of PPARγ and interference at different levels with the transcriptional cascade driving adipogenesis.


Asunto(s)
Adipogénesis/efectos de los fármacos , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Plastificantes/farmacología , Células 3T3-L1 , Animales , Células Hep G2 , Humanos , Ratones , PPAR gamma/metabolismo , Receptor alfa X Retinoide/metabolismo , Transducción de Señal
7.
Artículo en Inglés | MEDLINE | ID: mdl-24782832

RESUMEN

Endocannabinoids (eCBs) are natural lipids regulating a large array of physiological functions and behaviors in vertebrates. The eCB system is highly conserved in evolution and comprises several specific receptors (type-1 and type-2 cannabinoid receptors), their endogenous ligands (e.g., anandamide and 2-arachidonoylglycerol), and a number of biosynthetic and degradative enzymes. In the last few years, eCBs have been described as critical signals in the control of male and female reproduction at multiple levels: centrally, by targeting hypothalamic gonadotropin-releasing-hormone-secreting neurons and pituitary, and locally, with direct effects on the gonads. These functions are supported by the extensive localization of cannabinoid receptors and eCB metabolic enzymes at different levels of the hypothalamic-pituitary-gonadal axis in mammals, as well as bonyfish and amphibians. In vivo and in vitro studies indicate that eCBs centrally regulate gonadal functions by modulating the gonadotropin-releasing hormone-gonadotropin-steroid network through direct and indirect mechanisms. Several proofs of local eCB regulation have been found in the testis and male genital tracts, since eCBs control Sertoli and Leydig cells activity, germ cell progression, as well as the acquisition of sperm functions. A comparative approach usually is a key step in the study of physiological events leading to the building of a general model. Thus, in this review, we summarize the action of eCBs at different levels of the male reproductive axis, with special emphasis, where appropriate, on data from non-mammalian vertebrates.

8.
Int J Endocrinol ; 2013: 941237, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24101926

RESUMEN

The endocannabinoid system (ECS) has a well-documented pivotal role in the control of mammalian reproductive functions, by acting at multiple levels, that is, central (CNS) and local (gonads) levels. Since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, in the present paper we review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, focussing in particular on the central regulation of teleost and amphibian reproduction. The morphofunctional distribution of brain cannabinoid receptors will be discussed in relation to other crucial signalling molecules involved in the control of reproductive functions, such as GnRH, dopamine, aromatase, and pituitary gonadotropins.

9.
Ann N Y Acad Sci ; 1163: 372-5, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19456363

RESUMEN

Based on pharmacological, behavioral, and neuroanatomical studies, the endocannabinoid system appears to be pivotal in some neuroendocrine mechanisms, such as modulation of vertebrate reproduction, stress, and food intake. The present study aimed to investigate the involvement of the endocannabinoid system in the control of the feeding response in the goldfish. By means of immunohistochemistry techniques, using anti-CB1 cannabinoid receptor, anti-corticotropin-releasing factor (CRF), and anti-neuropeptide Y (NPY) antisera on brain sections of Carassius auratus, we found a topographical co-distribution of the three signaling molecules through the preoptic area and posterior lobes of the hypothalamus and even a co-localization of CB1 and NPY in the telencephalon. Previous results have shown that food deprivation in goldfish is accompanied by a significant increase of anandamide (AEA) levels in the telencephalon and AEA causes a dose-dependent effect on food intake. We have thus investigated the possible influence of intraperitoneal AEA injections on NPY expression. Our results indicate an interplay between the endocannabinoid system and orexigenic and anorexigenic molecules, such as NPY and, possibly, CRF.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Endocannabinoides , Carpa Dorada/metabolismo , Neuropéptido Y/metabolismo , Animales , Regulación de la Expresión Génica , Neuropéptido Y/genética
10.
Neuroreport ; 20(6): 595-9, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19293731

RESUMEN

The endocannabinoid system has a well-documented pivotal role in the control of mammalian feeding response; nevertheless, some evidence is available regarding a similar role in nonmammalian vertebrates and invertebrates. As in the bonyfish Carassius auratus, CB1 cannabinoid receptors are abundant in brain regions involved in the control of food intake, and fasting affects endocannabinoid levels, in this study the effects of food deprivation and anandamide administration on CB1 expression were evaluated. Fasting led to a time-dependent increase of CB1 mRNA levels in the forebrain, an effect reversed by refeeding. Furthermore, the administration of exogenous anandamide reduced CB1 expression in food-deprived goldfish. Our results support the involvement of CB1 receptors in the control of energy intake in nonmammalian vertebrates.


Asunto(s)
Ácidos Araquidónicos/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Ayuno/fisiología , Carpa Dorada/metabolismo , Alcamidas Poliinsaturadas/farmacología , Prosencéfalo/fisiología , Receptor Cannabinoide CB1/metabolismo , Actinas/metabolismo , Análisis de Varianza , Animales , Endocannabinoides , Femenino , Expresión Génica/efectos de los fármacos , Carpa Dorada/genética , Masculino , Piperidinas/farmacología , Reacción en Cadena de la Polimerasa , Prosencéfalo/efectos de los fármacos , Pirazoles/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Rombencéfalo/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA