Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(39): 18345-18354, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39163105

RESUMEN

Pseudo-octahedral CrIIIN6 chromophores hold a unique appeal for low-energy sensitization of NIR lanthanide luminescence due to their exceptionally long-lived spin-flip excited states. This allure persists despite the obstacles and complexities involved in integrating both elements into a metallosupramolecular assembly. In this work, we have designed a structurally optimized heteroleptic CrIII building block capable of binding rare earths. Following a complex-as-ligand synthetic strategy, two heterometallic supramolecular assemblies, in which three peripherical CrIII sensitizers coordinated through a molecular wire to a central ErIII or YIII, have been prepared. Upon excitation of the CrIII spin-flip states, the downshifted Er(4I13/2 → 4I15/2) emission at 1550 nm was induced through intramolecular energy transfer. Time-resolved experiments at room temperature reveal a CrIII → ErIII energy transfer of 62-73% efficiencies with rate constants of about 8.5 × 105 s-1 despite the long donor-acceptor distance (circa 14 Å). This efficient directional intermetallic energy transfer can be rationalized using the Dexter formalism, which is promoted by a rigid linear electron-rich alkyne bridge that acts as a molecular wire connecting the CrIII and ErIII ions.

2.
Angew Chem Int Ed Engl ; 60(18): 10095-10102, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33704880

RESUMEN

A series of highly emissive inert and chiral CrIII complexes displaying dual circularly polarized luminescence (CPL) within the NIR region have been prepared and characterized. The helical [Cr(dqpR)2 ]3+ (dqp=2,6-di(quinolin-8-yl)pyridine; R=OCH3 , Br or C≡CH) complexes were synthesized as racemic mixtures and resolved into their respective PP and MM enantiomers by chiral stationary phase HPLC. The corresponding enantiomers show large glum ≈0.2 and high quantum yield of up to 17 %, which afford important CPL brightness of up to 170 m-1 cm-1 , a key point for applications as chiral luminescent probes. Moreover, the long-lived CP-NIR emission provided by these chromophores (ms range) in aqueous solution opens the way toward the quantification of chiral targets in biological systems with time-gated detection. Thus, such chiral chromophores based on earth abundant and inert 3d metals open new perspectives in the field of CPL and represent an alternative to precious 4d, 5d and to labile 4f metal-based complexes.

3.
Chem Sci ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39364071

RESUMEN

Magnetic circularly polarized luminescence (MCPL), i.e. the possibility of generating circularly polarized luminescence in the presence of a magnetic field in achiral or racemic compounds, is a technique of rising interest. Here we show that the far-red spin-flip (SF) transitions of a molecular Cr(iii) complex give intense MCD (magnetic circular dichroism) and in particular MCPL (g MCPL up to 6.3 × 10-3 T-1) even at magnetic fields as low as 0.4 T. Cr(iii) doublet states and SF emission are nowadays the object of many investigations, as they may open the way to several applications. Due to their nature, such transitions can be conveniently addressed by MCPL, which strongly depends on the zero field splitting and Zeeman splitting of the involved states. Despite the complexity of the nature of such states and the related photophysics, the obtained MCPL data can be rationalized consistently with the information recovered with more established techniques, such as HFEPR (high-frequency and -field electron paramagnetic resonance). We anticipate that emissive molecular Cr(iii) species may be useful in magneto-optical devices, such as magnetic CP-OLEDs.

4.
Dalton Trans ; 49(39): 13528-13532, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32968750

RESUMEN

Implementing high quantum yields and long-lived excited state lifetimes within heteroleptic luminescent CrIII complexes is a keystone for the design of supramolecular energy-converting devices exploiting this cheap metal. In this contribution, we discuss the stepwise and rational optimization of these two limiting factors within a series of heteroleptic CrIII complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA