Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399912

RESUMEN

The present study focuses on an up-to-date topic regarding flying equipment identified within the category of drones that use, for propulsion and air movements, the power generated by electric motors. In this paper, researchers focus on implementing bladeless technology to calculate, develop, and construct flying equipment known in the literature as drones. The entire structure of the prototype, all the needed parts, is to be obtained using additive manufacturing technologies, which assumes practical realization using 3D-printing equipment. Nowadays, the 3D-printing process has been proven to be a reliable solution when it comes to manufacturing complex shape parts in quite a short time and with reduced costs. The practical study within the present research aims to obtain polymer-based, lightweight parts with complex shapes inside to be implemented in the propulsion of a drone. The complex surface geometry of the parts that this research used is influenced by the ventilation technology offered by the "Air Multiplier" technology. The entire structure of the final drone equipment, all the parts, is to be manufactured using fused filament fabrication (FFF). The main purpose of the fusion is to use the advantages offered by this technology in drones to obtain advantages such as augmented values of thrust, a more agreeable and muffled sound signature, or an increased level of safety.

2.
Polymers (Basel) ; 16(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38794496

RESUMEN

Three-dimensional (3D) printing of polymer materials encompasses a wide range of applications and innovations. Polymer-based 3D printing, also known as additive manufacturing, has gained significant attention due to its versatility, cost-effectiveness, and potential to revolutionize various industries. The current paper focuses on obtaining a durable low-cost rehabilitation knee orthosis. Researchers propose that the entire structure should be obtained using modern equipment within the additive manufacturing domain-3D printing. The researchers focus on determining, through a 3D analysis of the entire 3D model assembly, which parts present a high degree of stress when a kinematic simulation is developed. The entire 3D model of the orthosis starts based on the result obtained from a 3D scanning of the knee joint of a patient, providing a precise fixation, and allowing for direct personalization. Based on the results and identification of the critical parts, there will be used different materials and a combination of 3D printing strategies to validate the physical model of the entire orthosis. For the manufacturing process, the researchers use two types of low-cost fused filament fabrication (FFF), which are easy to find on the worldwide market. The motivation for manufacturing the entire assembly using 3D printing techniques is the short time in which complex shapes can be obtained, which is relevant for the present study. The main purpose of the present research is to advance orthotic technology by developing an innovative knee brace made of 3D-printed polymers that are designed to be lightweight, easy-to-use, and provide comfort and functionality to patients during the rehabilitation process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA