RESUMEN
Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. Bacillus subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after Escherichia coli and Thermus thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.
Asunto(s)
Bacillus subtilis , Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S , ARN Ribosómico 23S , Subunidades Ribosómicas Grandes Bacterianas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Ribosomas/genéticaRESUMEN
Understanding the assembly principles of biological macromolecular complexes remains a significant challenge, due to the complexity of the systems and the difficulties in developing experimental approaches. As a ribonucleoprotein complex, the ribosome serves as a model system for the profiling of macromolecular complex assembly. In this work, we report an ensemble of large ribosomal subunit intermediate structures that accumulate during synthesis in a near-physiological and co-transcriptional in vitro reconstitution system. Thirteen pre-50S intermediate maps covering the entire assembly process were resolved using cryo-EM single-particle analysis and heterogeneous subclassification. Segmentation of the set of density maps reveals that the 50S ribosome intermediates assemble based on fourteen cooperative assembly blocks, including the smallest assembly core reported to date, which is composed of a 600-nucleotide-long folded rRNA and three ribosomal proteins. The cooperative blocks assemble onto the assembly core following defined dependencies, revealing the parallel pathways at both early and late assembly stages of the 50S subunit.
Asunto(s)
ARN Ribosómico , Ribosomas , Ribosomas/genética , Ribosomas/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismoRESUMEN
The development of miniaturized high-throughput in situ screening platforms capable of handling the entire process of drug synthesis to final screening is essential for advancing drug discovery in the future. In this study, an approach based on combinatorial solid-phase synthesis, enabling the efficient synthesis of libraries of proteolysis targeting chimeras (PROTACs) in an array format is presented. This on-chip platform allows direct biological screening without the need for transfer steps. UV-induced release of target molecules into individual droplets facilitates further on-chip experimentation. Utilizing a mitogen-activated protein kinase kinases (MEK1/2) degrader as a template, a series of 132 novel PROTAC-like molecules is synthesized using solid-phase Ugi reaction. These compounds are further characterized using various methods, including matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) imaging, while consuming only a few milligrams of starting materials in total. Furthermore, the feasibility of culturing cancer cells on the modified spots and quantifying the effect of MEK suppression is demonstrated. The miniaturized synthesis platform lays a foundation for high-throughput in situ biological screening of potent PROTACs for potential anticancer activity and offers the potential for accelerating the drug discovery process by integrating miniaturized synthesis and biological steps on the same array.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Proteolisis , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Línea Celular Tumoral , MiniaturizaciónRESUMEN
BACKGROUND: IgA nephropathy (IgAN) is characterised by the production of galactose-deficient IgA1 (GdIgA1) antibodies. As the source of pathogenic antibodies, B cells are central to IgAN pathogenesis, but the B cell activation pathways as well as the potential B cell source of dysregulated IgA-secretion remain unknown. METHODS: We carried out flow cytometry analysis of peripheral blood B cells in patients with IgA nephropathy and control subjects with a focus on IgA-expressing B cells to uncover the pathways of B cell activation in IgAN and how these could give rise to pathogenic GdIgA1 antibodies. RESULTS: In addition to global changes in the B cell landscape - expansion of naive and reduction in memory B cells - IgAN patients present with an increased frequency of IgA-expressing B cells that lack the classical memory marker CD27, but are CD21pos. IgAN patients further have an expanded population of IgApos antibody-secreting cells, which correlate with serum IgA levels. Both IgApos plasmabalsts and CD27neg B cells co-express GdIgA1. Implicating dysregulation at mucosal surfaces as the driver of such B cell differentiation, we found a correlation between lipopolysaccharide (LPS) in the serum and IgAposCD27neg B cell frequency. CONCLUSION: We propose that dysregulated immunity in the mucosa may drive de novo B cell activation within germinal centres, giving rise to IgAposCD27neg B cells and subsequently IgA-producing plasmablasts. These data integrate B cells into the paradigm of IgAN pathogenesis and allow to further investigate this pathway to uncover biomarkers and develop therapeutic interventions.
RESUMEN
In the fight against coronavirus infection, control of the immune response is of decisive importance, an important component of which is the seroprevalence of antibodies to SARS-CoV-2. Immunity to SARS-CoV-2 is formed either naturally or artificially through vaccination. The purpose of this study was to assess the seroprevalence of antibodies to SARS-CoV-2 in the population of Kyrgyzstan. A cross-sectional randomized study of seroprevalence was carried out according to a program developed by Rospotrebnadzor and the St. Petersburg Pasteur Institute, taking into account WHO recommendations. The ethics committees of the Association of Preventive Medicine (Kyrgyzstan) and the St. Petersburg Pasteur Institute (Russia) approved the study. Volunteers (9471) were recruited, representing 0.15% (95% CI 0.14-0.15) of the total population, randomized by age and region. Plasma antibodies (Abs) to the nucleocapsid antigen (Nag) were determined. In vaccinated individuals, Abs to the SARS-CoV-2 receptor-binding domain antigen (RBDag) were determined. Differences were considered statistically significant at p < 0.05. The SARS-CoV-2 Nag Ab seroprevalence was 48.7% (95% CI 47.7-49.7), with a maximum in the 60-69 age group [59.2% (95% CI 56.6-61.7)] and a minimum in group 1-17 years old [32.7% (95 CI: 29.4-36.1)]. The highest proportion of seropositive individuals was in the Naryn region [53.3% (95% CI 49.8-56.8)]. The lowest share was in Osh City [38.1% (95% CI 32.6-43.9)]. The maximum SARS-CoV-2 Nag seropositivity was found in the health-care sector [57.1% (95% CI 55.4-58.8)]; the minimum was seen among artists [38.6% (95% CI 26.0-52.4)]. Asymptomatic SARS-CoV-2 Nag seropositivity was 77.1% (95% CI 75.6-78.5). Vaccination with Sputnik V or Sinopharm produced comparable Ab seroprevalence. SARS-CoV-2 Nag seropositivity in the Kyrgyz population was 48.75% (95% CI 47.7-49.7), with the mass vaccination campaign undoubtedly benefitting the overall situation.
Asunto(s)
COVID-19 , Inmunidad Colectiva , SARS-CoV-2 , Adolescente , Anticuerpos Antivirales , COVID-19/epidemiología , Niño , Preescolar , Estudios Transversales , Humanos , Lactante , Kirguistán/epidemiología , Estudios SeroepidemiológicosRESUMEN
Cardiovascular disease remains the leading cause of mortality accounting up to 40% of all deaths, but, currently, cancer is prominent cause of death globally. Anthracyclines are the cornerstone of chemotherapy in women with breast cancer. However, its clinical use is limited by their cardiotoxic effects that can trigger heart failure development. Vascular toxicity of chemotherapy may be linked with endothelial dysfunction because anthracycline damage of endothelial cells can lead to the development and progression of cardiomyopathy by decreasing the release and activity of endothelial factors and, ultimately, endothelial cell death. These processes suppress anti-inflammatory and vascular reparative functions and initiate the development of future cardiovascular events. Recent studies have shown that chemotherapy may induce toxicity in the vascular endothelium and is accompanied by systemic endothelial dysfunction in patients with diagnosed cardiovascular diseases. Because the initial endothelial cell insult is likely asymptomatic, there is often a long delay between the termination of doxorubicin therapy and the onset of vascular disorders. In this case, genetic susceptibility factor will help to identify susceptible patients in the future. The objectives of this study were to evaluate prognostic role of molecular (endothelin-1) and genetic factors (gene polymorphisms of endothelial nitric oxide (NO) synthase (NOS3, rs1799983), endothelin-1 receptor type A (EDNRA, C+70G, rs5335) and NADPH oxidase (C242T, rs4673) in development of endothelial dysfunction and anthracycline-induced cardiotoxicity in women without cardiovascular diseases.
Asunto(s)
Antraciclinas , Neoplasias de la Mama , Antraciclinas/efectos adversos , Antibióticos Antineoplásicos/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Cardiotoxicidad/etiología , Células Endoteliales , Femenino , HumanosRESUMEN
An association between high serum calcium/phosphate and cardiovascular events or death is well-established. However, a mechanistic explanation of this correlation is lacking. Here, we examined the role of calciprotein particles (CPPs), nanoscale bodies forming in the human blood upon its supersaturation with calcium and phosphate, in cardiovascular disease. The serum of patients with coronary artery disease or cerebrovascular disease displayed an increased propensity to form CPPs in combination with elevated ionised calcium as well as reduced albumin levels, altogether indicative of reduced Ca2+-binding capacity. Intravenous administration of CPPs to normolipidemic and normotensive Wistar rats provoked intimal hyperplasia and adventitial/perivascular inflammation in both balloon-injured and intact aortas in the absence of other cardiovascular risk factors. Upon the addition to primary human arterial endothelial cells, CPPs induced lysosome-dependent cell death, promoted the release of pro-inflammatory cytokines, stimulated leukocyte adhesion, and triggered endothelial-to-mesenchymal transition. We concluded that CPPs, which are formed in the blood as a result of altered mineral homeostasis, cause endothelial dysfunction and vascular inflammation, thereby contributing to the development of cardiovascular disease.
Asunto(s)
Angina de Pecho/fisiopatología , Isquemia Encefálica/fisiopatología , Cloruro de Calcio/sangre , Enfermedad de la Arteria Coronaria/fisiopatología , Células Endoteliales/patología , Infarto del Miocardio/fisiopatología , Fosfatos/sangre , Angina de Pecho/sangre , Angina de Pecho/genética , Animales , Aorta/metabolismo , Aorta/patología , Isquemia Encefálica/sangre , Isquemia Encefálica/genética , Cloruro de Calcio/química , Estudios de Casos y Controles , Muerte Celular , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/genética , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Floculación , Regulación de la Expresión Génica , Humanos , Inflamación , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/metabolismo , Leucocitos/patología , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Fosfatos/química , Cultivo Primario de Células , Ratas , Ratas Wistar , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
In 2018, a previously unknown Ebola virus, Bombali virus, was discovered in Sierra Leone. We describe detection of Bombali virus in Guinea. We found viral RNA in internal organs of 3 Angolan free-tailed bats (Mops condylurus) trapped in the city of N'Zerekore and in a nearby village.
Asunto(s)
Quirópteros/virología , Brotes de Enfermedades/prevención & control , Reservorios de Enfermedades , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/epidemiología , Animales , Guinea/epidemiología , Fiebre Hemorrágica Ebola/transmisión , Humanos , Liberia/epidemiología , ZoonosisRESUMEN
Tumor spheroids or microtumors are important 3D in vitro tumor models that closely resemble a tumor's in vivo "microenvironment" compared to 2D cell culture. Microtumors are widely applied in the fields of fundamental cancer research, drug discovery, and precision medicine. In precision medicine tumor spheroids derived from patient tumor cells represent a promising system for drug sensitivity and resistance testing. Established and commonly used platforms for routine screenings of cell spheroids, based on microtiter plates of 96- and 384-well formats, require relatively large numbers of cells and compounds, and often lead to the formation of multiple spheroids per well. In this study, an application of the Droplet Microarray platform, based on hydrophilic-superhydrophobic patterning, in combination with the method of hanging droplet, is demonstrated for the formation of highly miniaturized single-spheroid-microarrays. Formation of spheroids from several commonly used cancer cell lines in 100 nL droplets starting with as few as 150 cells per spheroid within 24-48 h is demonstrated. Established methodology carries a potential to be adopted for routine workflows of high-throughput compound screening in 3D cancer spheroids or microtumors, which is crucial for the fields of fundamental cancer research, drug discovery, and precision medicine.
Asunto(s)
Análisis por Micromatrices/métodos , Neoplasias/patología , Esferoides Celulares/patología , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Microtecnología , Agua/químicaRESUMEN
Macrophages are responsible for the control of inflammation and healing, and their malfunction results in cardiometabolic disorders. TGF-ß is a pleiotropic growth factor with dual (protective and detrimental) roles in atherogenesis. We have previously shown that in human macrophages, TGF-ß1 activates Smad2/3 signaling and induces a complex gene expression program. However, activated genes were not limited to known Smad2/3-dependent ones, which prompted us to study TGF-ß1-induced signaling in macrophages in detail. Analysis of Id3 regulatory sequences revealed a novel enhancer, located between +4517 and 4662 bp, but the luciferase reporter assay demonstrated that this enhancer is not Smad2/3 dependent. Because Id3 expression is regulated by Smad1/5 in endothelial cells, we analyzed activation of Smad1/5 in macrophages. We demonstrate here for the first time, to our knowledge, that TGF-ß1, but not BMPs, activates Smad1/5 in macrophages. We show that an ALK5/ALK1 heterodimer is responsible for the induction of Smad1/5 signaling by TGF-ß1 in mature human macrophages. Activation of Smad1/5 by TGF-ß1 induces not only Id3, but also HAMP and PLAUR, which contribute to atherosclerotic plaque vulnerability. We suggest that the balance between Smad1/5- and Smad2/3-dependent signaling defines the outcome of the effect of TGF-ß on atherosclerosis where Smad1/5 is responsible for proatherogenic effects, whereas Smad2/3 regulate atheroprotective effects of TGF-ß.
Asunto(s)
Macrófagos/inmunología , Placa Aterosclerótica/inmunología , Transducción de Señal/inmunología , Proteína Smad1/inmunología , Proteína Smad5/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Receptores de Activinas Tipo II/inmunología , Proteínas Morfogenéticas Óseas/inmunología , Células Cultivadas , Hepcidinas/inmunología , Humanos , Proteínas Inhibidoras de la Diferenciación/inmunología , Macrófagos/patología , Proteínas de Neoplasias/inmunología , Placa Aterosclerótica/patología , Proteínas Serina-Treonina Quinasas/inmunología , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Receptores del Activador de Plasminógeno Tipo Uroquinasa/inmunología , Proteína Smad2/inmunología , Proteína smad3/inmunologíaRESUMEN
Post-transcriptional RNA modifications that are introduced during the multistep ribosome biogenesis process are essential for protein synthesis. The current lack of a comprehensive method for a fast quantitative analysis of rRNA modifications significantly limits our understanding of how individual modification steps are coordinated during biogenesis inside the cell. Here, an LC-MS approach has been developed and successfully applied for quantitative monitoring of 29 out of 36 modified residues in the 16S and 23S rRNA from Escherichia coli . An isotope labeling strategy is described for efficient identification of ribose and base methylations, and a novel metabolic labeling approach is presented to allow identification of MS-silent pseudouridine modifications. The method was used to measure relative abundances of modified residues in incomplete ribosomal subunits compared to a mature (15)N-labeled rRNA standard, and a number of modifications in both 16S and 23S rRNA were present in substoichiometric amounts in the preribosomal particles. The RNA modification levels correlate well with previously obtained profiles for the ribosomal proteins, suggesting that RNA is modified in a schedule comparable to the association of the ribosomal proteins. Importantly, this study establishes an efficient workflow for a global monitoring of ribosomal modifications that will contribute to a better understanding of mechanisms of RNA modifications and their impact on intracellular processes in the future.
Asunto(s)
Escherichia coli , Espectrometría de Masas/métodos , Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S/química , ARN Ribosómico 23S/química , Cromatografía Liquida/métodos , Escherichia coli/enzimología , Marcaje Isotópico , Isótopos de Nitrógeno , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/metabolismoRESUMEN
The Droplet Microarray (DMA) has emerged as a tool for high-throughput biological and chemical applications by enabling miniaturization and parallelization of experimental processes. Due to its ability to hold hundreds of nanoliter droplets, the DMA enables simple screening and analysis of samples such as cells and biomolecules. However, handling of nanoliter volumes poses a challenge, as manual recovery of nanoliter volumes is not feasible, and traditional laboratory equipment is not suited to work with such low volumes, and small array formats. To tackle this challenge, we developed the Automated Nanoliter Droplet Selection device (ANDeS), a robotic system for automated collection and transfer of nanoliter samples from DMA. ANDeS can automatically collect volumes from 50 to 350 nL from the flat surface of DMA with a movement accuracy of ±30 µm using fused silica capillaries. The system can automatically collect and transfer the droplets from DMA chip into other platforms, such as microtiter plates, conical tubes or another DMA. In addition, to ensure high throughput and multiple droplet collection, the uptake of multiple droplets within a single capillary, separated by air gaps to avoid mixing of the samples within the capillary, was optimized and demonstrated. This study shows the potential of ANDeS in laboratory applications by using it for the collection and transfer of biological samples, contained in nanoliter droplets, for subsequent analysis. The experimental results demonstrate the ability of ANDeS to increase the versatility of the DMA platform by allowing for automated retrieval of nanoliter samples from DMA, which was not possible manually on the level of individual droplets. Therefore, it widens the variety of analytical techniques that can be used for the analysis of content of individual droplets and experiments performed using DMA. Thus, ANDeS opens up opportunities to expand the development of miniaturized assays in such fields as cell screening, omics analysis and combinatorial chemistry.
Asunto(s)
MiniaturizaciónRESUMEN
Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. B. subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after E. coli and T. thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.
RESUMEN
Patients with pancreatic cancer (PC) showing mismatch repair (MMR) deficiency may benefit from immunotherapy. Microsatellite instability (MSI) is a hallmark of MMR deficiency (MMR-D). Here, we estimated the prevalence of MSI in PC, investigated germline and somatic mutations in the three MMR genes (MLH1, MSH2, and MSH6), and assessed the relationship between MMR genes mutations and MSI status in PC. Clinical specimens from PC patients were analyzed using targeted next-generation sequencing, including paired normal and tumor specimens from 155 patients, tumor-only specimens from 86 patients, and normal-only specimens from 379 patients. The MSI status of 235 PCs was assessed via PCR. Pathogenic/likely pathogenic (P/LP) germline variants in the MMR genes were identified in 1.1% of patients, while somatic variants were found in 2.6% of patients. No MSI-H tumors were detected. One patient carried two variants (P (VAF = 0.57) and LP (VAF = 0.25)) simultaneously; however, their germline/somatic status remains unknown due to the investigation focusing solely on the tumor and MSI analysis was not performed for this patient. MSI is rare in PC, even in tumors with MMR genes mutations. Our findings underscore the importance of assessing tumor MMR-D status in PC patients with confirmed Lynch syndrome when deciding whether to prescribe immunotherapy.
RESUMEN
Label-free real-time monitoring of cellular behavior using impedance spectroscopy is important for drug development and toxicological assessments. Parallelization and miniaturization of such experiments are essential for increasing throughput and enabling experiments with low abundant stem or primary cells. Traditional methods are not miniaturized and require large volumes of reagents and number of cells, limiting their suitability for cost effective high-throughput screening of cells of limited availability. Here, the fabrication, optimization, and application of a bioelectrical signaling monitoring system - electrode droplet microarray (eDMA) are demonstrated. The eDMA platform is based on preparation of a hydrophilic-superhydrophobic patterns covering an array of individually addressable microelectrodes, which confines cells to individual microelectrodes, allowing for parallel, real-time, and label-free detection of cellular responses to drug treatments in nanoliter droplets. The real-time monitoring of cytotoxic effect of an anticancer drug is demonstrated over 48 h with real-time calculation of the half-inhibitory concentration (IC50) values through impedance spectroscopy. This demonstrates eDMA's ability to dynamically assess responses to various drugs in parallel at any given time point, which is crucial for functional personalized oncology. Specifically, the platform can be employed for monitoring anticancer drug toxicity using limited patient samples, where the miniaturization provided by eDMA is essential.
RESUMEN
Drug-induced differential gene expression analysis (DGEA) is essential for uncovering the molecular basis of cell phenotypic changes and understanding individual tumor responses to anticancer drugs. Performing high throughput DGEA is challenging due to the high cost and labor-intensive multi-step sample preparation protocols. In particular, performing drug-induced DGEA on cancer cells derived from patient biopsies is even more challenging due to the scarcity of available cells. A novel, miniaturized, nanoliter-scale method for drug-induced DGEA is introduced, enabling high-throughput and parallel analysis of patient-derived cell drug responses, overcoming the limitations and laborious nature of traditional protocols. The method is based on the Droplet Microarray (DMA), a microscope glass slide with hydrophilic spots on a superhydrophobic background, facilitating droplet formation for cell testing. DMA allows microscopy-based phenotypic analysis, cDNA extraction, and DGEA. The procedure includes cell lysis for mRNA isolation and cDNA conversion followed by droplet pooling for qPCR analysis. In this study, the drug-induced DGEA protocol on the DMA platform is demonstrated using patient-derived chronic lymphocytic leukemia (CLL) cells. This methodology is critical for DGEA with limited cell numbers and promise for applications in functional precision oncology. This method enables molecular profiling of patient-derived samples after drug treatment, crucial for understanding individual tumor responses to anticancer drugs.
RESUMEN
Background: Enchytraeids, or potworms, are tiny oligochaetes that are distributed worldwide in many terrestrial, freshwater and marine ecosystems. Despite their key role in the functioning of ecosystems, the diversity and abundance of Enchytraeidae are rarely studied due to the laborious process of species identification. The present study addresses this gap and sheds some light on the distribution and abundance of enchytraeids in the lands of the Northern Palearctic. The provided dataset constitutes the latest and comprehensive field sampling of enchytraeid assemblages across the Asiatic part of the Northern Palearctic, encompassing an original set of soil samples systematically collected throughout the region from 2019 to 2022. New information: The dataset includes occurrences from 131 georeferenced sites, encompassing 39 species and 7,074 records. This represents the first dataset providing species-specific information about the distribution and abundance of terrestrial enchytraeids across an extensive geographic area covering the Asian sector of the Northern Palaearctic. The compiled dataset is the key for exploring and understanding local and regional enchytraeid diversity. It may also serve as a valuable resource for monitoring and conserving the entire soil biodiversity.
RESUMEN
Nanocomposites based on ferromagnetic nickel nanoparticles and graphene-related materials are actively used in various practical applications such as catalysis, sensors, sorption, etc. Therefore, maintaining their dispersity and homogeneity during deposition onto the reduced graphene oxide substrate surface is of crucial importance to provide the required product characteristics. This paper demonstrates a new, reproducible method for preparing a tailored composite based on nickel nanoparticles on the reduced graphene oxide surface using supercritical isopropanol treatment. It has been shown that when a graphene oxide film with previously incorporated Ni2+ salt is treated with isopropanol at supercritical conditions, nickel (2+) is reduced to Ni (0), with simultaneous deoxygenation of the graphene oxide substrate. The resulting composite is a solid film exhibiting magnetic properties. XRD, FTIR, Raman, TEM, and HRTEM methods were used to study all the obtained materials. It was shown that nickel nanoparticles on the surface of the reduced graphene oxide had an average diameter of 27 nm and were gradually distributed on the surface of reduced graphene oxide sheets. The data obtained allowed us to conduct a reconnaissance discussion of the mechanism of composite fabrication in supercritical isopropanol.
RESUMEN
To address the challenge of drug resistance and limited treatment options for recurrent gliomas with IDH1 mutations, a highly miniaturized screening of 2208 FDA-approved drugs is conducted using a high-throughput droplet microarray (DMA) platform. Two patient-derived temozolomide-resistant tumorspheres harboring endogenous IDH1 mutations (IDH1mut ) are utilized. Screening identifies over 20 drugs, including verteporfin (VP), that significantly affected tumorsphere formation and viability. Proteomics analysis reveals that nuclear pore complex may be a potential VP target, suggesting a new mechanism of action independent of its known effects on YAP1. Knockdown experiments exclude YAP1 as a drug target in tumorspheres. Pathway analysis shows that NUP107 is a potential upstream regulator associated with VP response. Analysis of publicly available genomic datasets shows a significant correlation between high NUP107 expression and decreased survival in IDH1mut astrocytoma, suggesting NUP107 may be a potential biomarker for VP response. This study demonstrates a miniaturized approach for cost-effective drug repurposing using 3D glioma models and identifies nuclear pore complex as a potential target for drug development. The findings provide preclinical evidence to support in vivo and clinical studies of VP and other identified compounds to treat IDH1mut gliomas, which may ultimately improve clinical outcomes for patients with this challenging disease.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Reposicionamiento de Medicamentos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/uso terapéutico , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismoRESUMEN
Introduction: Cervical cancer (CC) is a prevalent malignancy affecting women globally. The primary causative factor of CC is the high-risk oncogenic human papillomavirus (HR-HPV). However, it is noteworthy that not all women infected with HR-HPV develop cancer, indicating the potential involvement of genetic predisposition in the development of CC. This study aims to identify genetic risks and their distribution in groups of women with different epidemiological features of HR-HPV. Materials and methods: A comparison was conducted among four groups of women, comprising 218 HPV-negative women, 120 HPV-positive women, 191 women diagnosed with cervical intraepithelial neoplasia (CIN) grade 2 or 3, and 124 women diagnosed with CC. The analysis focused on four single nucleotide polymorphisms (SNPs): rs55986091 in HLA-DQB1, rs138446575 in TTC34, rs1048943 in CYP1A1, and rs2910164 in miRNA-146a. Results: The rs55986091-A allele exhibited a protective effect within the "CC" group when compared to the "HPV-Negative" group (OR = 0.4, 95% CI= 0.25-0.65) using a log-additive model. Additionally, similar protective effects were observed in the "CIN 2/3" group compared to the "HPV-Negative" group (OR = 0.47, 95% CI = 0.28-0.79). Conclusion: The data obtained emphasize the importance of developing PCR-based diagnostic kits for the identification of SNP alleles, particularly for rs55986091, among HR-HPV-positive women within the Russian population.