Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Neuroendocrinol ; 66: 101017, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35843303

RESUMEN

Steroid hormones influence different aspects of brain function, including development, neurogenesis, neuronal excitability, and plasticity, thus affecting emotional states, cognition, sociality, and reward. In women, their levels fluctuate across the lifespan and through the reproductive stages but are also altered by exogenous administration of hormonal contraceptives (HC). HC are widely used by women throughout their fertile life both for contraceptive and therapeutic benefits. However, awareness of their effects on brain function and behavior is still poorly appreciated, despite the emerging evidence of their action at the level of the central nervous system. Here, we summarize results obtained in preclinical studies, mostly conducted in intact female rodents, aimed at investigating the neurobiological effects of HC. HC can alter neuroactive hormones, neurotransmitters, neuropeptides, as well as emotional states, cognition, social and sexual behaviors. Animal studies provide insights into the neurobiological effects of HC with the aim to improve women's health and well-being.


Asunto(s)
Encéfalo , Anticonceptivos , Animales , Anticonceptivos/farmacología , Emociones , Femenino , Hormonas , Humanos , Conducta Sexual
2.
Horm Behav ; 144: 105218, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35785712

RESUMEN

Hormonal contraceptives prevent ovulation with subsequent reduction in endogenous levels of estradiol, progesterone and its neuroactive metabolite allopregnanolone. These neurosteroids modulate several brain functions, including neuronal plasticity, cognition and memory. We hypothesized that hormonal contraceptives might affect synaptic plasticity, learning and memory, as a consequence of suppressed endogenous hormones levels. Female rats were orally treated with a combination of ethinyl estradiol (EE, 0.020 mg) and levonorgestrel (LNG, 0.060 mg) once daily for four weeks. Decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and altered histone H3 post-translational modifications (PTMs) were observed 14 days after discontinuation from chronic EE-LNG treatment. These effects were not accompanied by alterations in long-term plasticity at glutamatergic synapses, recognition memory in the novel object and novel place location tests, or spatial learning, memory, and behavioral flexibility in the Morris water maze test. Thus, decreased BDNF content does not affect synaptic plasticity and cognitive performance; rather it might be relevant for the occurrence of certain psychiatric symptoms, reported by some women using hormonal contraceptives. These results provide the first evidence of hippocampal epigenetic changes induced by hormonal contraceptives and complement previous studies on the neurobiological actions of hormonal contraceptives; the finding that effects of chronic EE-LNG treatment on BDNF content and histone PTMs are observed 14 days after drug discontinuation warrants further investigation to better understand the implications of such long-term consequences for women's health.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Histonas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Anticonceptivos/metabolismo , Anticonceptivos/farmacología , Femenino , Hipocampo , Histonas/metabolismo , Humanos , Plasticidad Neuronal , Procesamiento Proteico-Postraduccional , Ratas
3.
Front Neuroendocrinol ; 55: 100799, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31614151

RESUMEN

Hormonal contraceptives are frequently prescribed drugs among women, mainly for their reversible contraceptive purposes but also for beneficial effects in some gynecological pathologies. Despite extensive studies aimed at elucidating the physical effects of hormonal contraceptives and ameliorating some unwanted outcomes, little is known yet about the effects of these drugs on brain function and related behavior, which are known to be modulated by endogenous steroid hormones. We describe the current literature on preclinical studies in animals undertaken to investigate effects of hormonal contraceptives on brain function and behavior. These studies suggest that hormonal contraceptives influence neurohormones, neurotransmitters, neuropeptides, and emotional, cognitive, social and sexual behaviors. Animals allow examination of the basic biological mechanisms of these drugs, devoid of the psychological aspect often associated to hormonal contraceptives' use in women. Understanding the neurobiological effects of these drugs may improve women's health and may help women making informed choices on hormonal contraception.


Asunto(s)
Ansiedad , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Agentes Anticonceptivos Hormonales/farmacología , Depresión , Aprendizaje/efectos de los fármacos , Neuropéptidos/efectos de los fármacos , Neuroesteroides , Pregnanolona/farmacología , Conducta Sexual/efectos de los fármacos , Conducta Social , Estrés Psicológico , Transmisión Sináptica/efectos de los fármacos , Animales , Ansiedad/inducido químicamente , Ansiedad/metabolismo , Ansiedad/fisiopatología , Depresión/inducido químicamente , Depresión/metabolismo , Depresión/fisiopatología , Femenino , Humanos , Estrés Psicológico/inducido químicamente , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
4.
Alcohol Clin Exp Res ; 44(2): 320-339, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782169

RESUMEN

For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Ensayos Clínicos como Asunto/métodos , Pregnanolona/metabolismo , Pregnanolona/uso terapéutico , Alcoholismo/inmunología , Anestésicos/inmunología , Anestésicos/metabolismo , Anestésicos/uso terapéutico , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Hormona Liberadora de Corticotropina/inmunología , Hormona Liberadora de Corticotropina/metabolismo , Humanos , Pregnanolona/inmunología , Receptores de GABA-B/inmunología , Receptores de GABA-B/metabolismo , Resultado del Tratamiento
5.
Alcohol Clin Exp Res ; 42(1): 12-20, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29112774

RESUMEN

BACKGROUND: Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) are potent neuromodulators that enhance GABAergic neurotransmission and produce inhibitory neurobehavioral and anti-inflammatory effects. Chronic ethanol (EtOH) consumption reduces 3α,5α-THP levels in human plasma, but has brain region- and species-specific effects on central nervous system levels of 3α,5α-THP. We explored the relationship between 3α,5α-THP levels in the hippocampus and voluntary EtOH consumption in the cynomolgus monkey following daily self-administration of EtOH for 12 months and further examined the relationship with hypothalamic-pituitary-adrenal (HPA) axis function prior to EtOH exposure. We simultaneously explored hippocampus levels of monocyte chemoattractant protein 1 (MCP-1), a pro-inflammatory cytokine that plays an important role in the neuroimmune response to EtOH, following chronic self-administration. METHODS: Monkeys were subjected to scheduled induction of water and EtOH consumption (0 to 1.5 g/kg) over 4 months, followed by free access to EtOH or water for 22 h/d over 12 months. Immunohistochemistry was performed using an anti-3α,5α-THP or anti-MCP-1 antibody. Prolonged voluntary drinking resulted in individual differences in EtOH consumption that ranged from 1.2 to 4.2 g/kg/d over 12 months. RESULTS: Prolonged EtOH consumption increased cellular 3α,5α-THP immunoreactivity by 12 ± 2% (p < 0.05) and reduced MCP-1 immunoreactivity by 23 ± 9% (p < 0.05) in the hippocampus CA1. In both cases, the effect of EtOH was most pronounced in heavy drinkers that consumed ≥3 g/kg for ≥20% of days. 3α,5α-THP immunoreactivity was positively correlated with average daily EtOH intake (Spearman r = 0.76, p < 0.05) and dexamethasone inhibition of HPA axis function (Spearman r = 0.9, p < 0.05). In contrast, MCP-1 immunoreactivity was negatively correlated with average daily EtOH intake (Spearman r = -0.78, p < 0.05) and dexamethasone suppression of HPA axis function (Spearman r = -0.76, p < 0.05). Finally, 3α,5α-THP and MCP-1 immunoreactivity were inversely correlated with each other (Spearman r = -0.68, p < 0.05). CONCLUSIONS: These data indicate that voluntary, long-term EtOH consumption results in higher levels of 3α,5α-THP, while decreasing levels of MCP-1 in the CA1 hippocampus, and that both changes may be linked to HPA axis function and the magnitude of voluntary EtOH consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Región CA1 Hipocampal/metabolismo , Quimiocina CCL2/metabolismo , Pregnanolona/metabolismo , Consumo de Bebidas Alcohólicas/psicología , Animales , Biomarcadores/metabolismo , Macaca fascicularis
6.
J Appl Clin Med Phys ; 19(4): 35-43, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29740971

RESUMEN

The aim of this study was to investigate the use of 3D optical localization of multiple surface control points for deep inspiration breath-hold (DIBH) guidance in left-breast radiotherapy treatments. Ten left-breast cancer patients underwent whole-breast DIBH radiotherapy controlled by the Real-time Position Management (RPM) system. The reproducibility of the tumor bed (i.e., target) was assessed by the position of implanted clips, acquired through in-room kV imaging. Six to eight passive fiducials were positioned on the patients' thoraco-abdominal surface and localized intrafractionally by means of an infrared 3D optical tracking system. The point-based registration between treatment and planning fiducials coordinates was applied to estimate the interfraction variations in patients' breathing baseline and to improve target reproducibility. The RPM-based DIBH control resulted in a 3D error in target reproducibility of 5.8 ± 3.4 mm (median value ± interquartile range) across all patients. The reproducibility errors proved correlated with the interfraction baseline variations, which reached 7.7 mm for the single patient. The contribution of surface fiducials registration allowed a statistically significant reduction (p < 0.05) in target localization errors, measuring 3.4 ± 1.7 mm in 3D. The 3D optical monitoring of multiple surface control points may help to optimize the use of the RPM system for improving target reproducibility in left-breast DIBH irradiation, providing insights on breathing baseline variations and increasing the robustness of external surrogates for DIBH guidance.


Asunto(s)
Mama , Neoplasias de la Mama , Contencion de la Respiración , Corazón , Humanos , Mastectomía Segmentaria , Planificación de la Radioterapia Asistida por Computador , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X , Neoplasias de Mama Unilaterales
7.
Horm Behav ; 87: 35-46, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27769760

RESUMEN

Exposure of female rats to estradiol during the perinatal period has profound effects on GABAergic neurotransmission that are crucial to establish sexually dimorphic brain characteristics. We previously showed that neonatal ß-estradiol 3-benzoate (EB) treatment decreases brain concentrations of the neurosteroid allopregnanolone, a potent positive modulator of extrasynaptic GABAA receptors (GABAAR). We thus evaluated whether neonatal EB treatment affects GABAAR expression and function in the hippocampus of adult female rats. Neonatal EB administration increased the expression of extrasynaptic α4/δ subunit-containing GABAARs and the modulatory action of THIP on tonic currents mediated by these receptors. The same treatment decreased the expression of synaptic α1/α4/γ2 subunit-containing receptors, as well as phasic currents. These effects of neonatal EB treatment are not related to ambient allopregnanolone concentrations per se, given that vehicle-treated rats in diestrus, which have opposite neurosteroid levels than EB-treated rats, show similar changes in GABAARs. Rather, these changes may represent a compensatory mechanism to counteract the long-term reduction in allopregnanolone concentrations, induced by neonatal EB. Given that both α4/δ receptors and allopregnanolone are involved in memory consolidation, we evaluated whether neonatal EB treatment alters performance in the Morris water maze test during adulthood. Neonatal EB treatment decreased the latency and the cumulative search error to reach the platform, as well as thigmotaxis, suggesting improved learning, and also enhanced memory performance during the probe trial. These enduring changes in GABAAR plasticity may be relevant for the regulation of neuronal excitability in the hippocampus and for the etiology of psychiatric disorders that originate in development and show sex differences.


Asunto(s)
Estradiol/farmacología , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiología , Aprendizaje Espacial/efectos de los fármacos , Animales , Animales Recién Nacidos , Estradiol/análogos & derivados , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Neurotransmisores/farmacología , Pregnanolona/farmacología , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales , Transmisión Sináptica/efectos de los fármacos
8.
Acta Oncol ; 56(8): 1081-1088, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28534430

RESUMEN

AIM: To quantify the variability between radiation oncologists (ROs) when outlining axillary nodes in breast cancer. MATERIAL AND METHODS: For each participating center, three ROs with different levels of expertise, i.e., junior (J), senior (S) and expert (E), contoured axillary nodal levels (L1, L2, L3 and L4) on the CT images of three different patients (P) of an increasing degree of anatomical complexity (from P1 to P2 to P3), according to contouring guidelines. Consensus contours were generated using the simultaneous truth and performance level estimation (STAPLE) method. RESULTS: Fifteen centers and 42 ROs participated. Overall, the median Dice similarity coefficient was 0.66. Statistically significant differences were observed according to the level of expertise (better agreement for J and E, worse for S); the axillary level (better agreement for L1 and L4, worse for L3); the patient (better agreement for P1, worse for P3). Statistically significant differences in contouring were found in 18% of the inter-center comparison. Less than a half of the centers could claim to have a good agreement between the internal ROs. CONCLUSIONS: The overall intra-institute and inter-institute agreement was moderate. Central lymph-node levels were the most critical and variability increased as the complexity of the patient's anatomy increased. These findings might have an effect on the interpretation of results from multicenter and even mono-institute studies.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Ganglios Linfáticos/patología , Órganos en Riesgo/patología , Guías de Práctica Clínica como Asunto , Planificación de la Radioterapia Asistida por Computador/métodos , Axila , Femenino , Humanos , Ganglios Linfáticos/efectos de la radiación , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Carga Tumoral
9.
Addict Biol ; 22(2): 318-330, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26625954

RESUMEN

Neuroactive steroids such as (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) enhance the gamma-aminobutyric acid (GABA)-ergic effects of ethanol and modulate excessive drinking in rodents. Moreover, chronic ethanol consumption reduces 3α,5α-THP levels in human plasma, rat hippocampus and mouse limbic regions. We explored the relationship between 3α,5α-THP levels in limbic brain areas and voluntary ethanol consumption in the cynomolgus monkey following daily self-administration of ethanol for 12 months and further examined the relationship to hypothalamic-pituitary-adrenal (HPA) axis function prior to ethanol exposure. Monkeys were subjected to scheduled induction of ethanol consumption followed by free access to ethanol or water for 22 h/day over 12 months. Immunohistochemistry was performed using an anti-3α,5α-THP antibody. Prolonged voluntary drinking resulted in individual differences in ethanol consumption that ranged from 1.2 to 4.2 g/kg/day over 12 months. Prolonged ethanol consumption reduced cellular 3α,5α-THP immunoreactivity by 13 ± 2 percent (P < 0.05) in the lateral amygdala and 17 ± 2 percent (P < 0.05) in the basolateral amygdala. The effect of ethanol was most pronounced in heavy drinkers that consumed ≥3 g/kg ≥ 20 percent of days. Consequently, 3α,5α-THP immunoreactivity in both the lateral and basolateral amygdala was inversely correlated with average daily ethanol intake (Spearman r = -0.87 and -0.72, respectively, P < 0.05). However, no effect of ethanol and no correlation between drinking and 3α,5α-THP immunoreactivity were observed in the basomedial amygdala. 3α,5α-THP immunoreactivity following ethanol exposure was also correlated with HPA axis function prior to ethanol exposure. These data indicate that voluntary ethanol drinking reduces amygdala levels of 3α,5α-THP in non-human primates and that amygdala 3α,5α-THP levels may be linked to HPA axis function.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Pregnanolona/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Conducta Animal , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depresores del Sistema Nervioso Central/administración & dosificación , Relación Dosis-Respuesta a Droga , Etanol/administración & dosificación , Inmunohistoquímica , Macaca fascicularis , Masculino , Autoadministración
10.
Mol Cell Neurosci ; 72: 1-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26805653

RESUMEN

GABAA receptors containing α4 subunits are widely implicated in acute ethanol sensitivity, and their spatial and temporal regulation prominently contributes to ethanol-induced neuroplasticity in hippocampus and cortex. However, it is unknown if α4-containing GABAA receptors in the thalamus, an area of high α4 expression, display similar regulatory patterns following ethanol administration, and if so, by which molecular mechanisms. In the current study, thalamic GABAA receptor α4 subunit levels were increased following a 6-week-, but not a 2-week chronic ethanol diet. Following acute high-dose ethanol administration, thalamic GABAA receptor α4 subunit levels were regulated in a temporal fashion, as a decrease was observed at 2h followed by a delayed transient increase. PKCγ and PKCδ levels paralleled α4 temporal expression patterns following ethanol exposure. Initial decreases in α4 subunit expression were associated with reduced serine phosphorylation. Delayed increases in expression were not associated with a change in phosphorylation state, but were prevented by inhibiting neuroactive steroid production with the 5α-reductase inhibitor finasteride. Overall, these studies indicate that thalamic GABAA receptor α4 subunit expression following acute and chronic ethanol administration exhibits similar regulatory patterns as other regions and that transient expression patterns following acute exposure in vivo are likely dependent on both subunit phosphorylation state and neuroactive steroids.


Asunto(s)
Etanol/farmacología , Neurotransmisores/metabolismo , Procesamiento Proteico-Postraduccional , Receptores de GABA-A/metabolismo , Animales , Finasterida/farmacología , Masculino , Fosforilación , Proteína Quinasa C/metabolismo , Proteína Quinasa C-delta/metabolismo , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Tálamo/efectos de los fármacos , Tálamo/metabolismo
11.
J Neurosci ; 34(17): 5824-34, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760842

RESUMEN

Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.


Asunto(s)
Alcoholes/administración & dosificación , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Condicionamiento Operante/fisiología , Etanol/administración & dosificación , Pregnanolona/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Condicionamiento Operante/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Wistar , Autoadministración , Área Tegmental Ventral/efectos de los fármacos
12.
Alcohol Clin Exp Res ; 38(4): 948-58, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24428156

RESUMEN

BACKGROUND: Ethanol (EtOH) administration increases brain allopregnanolone levels in rats, and this increase contributes to sensitivity to EtOH's behavioral effects. However, EtOH's effects on allopregnanolone may differ across species. We investigated the effects of acute EtOH administration on allopregnanolone, progesterone, and corticosterone levels in cerebral cortex and hippocampus of C57BL/6J and DBA/2J mice, 2 inbred strains with different alcohol sensitivity. METHODS: Naïve male C57BL/6J and DBA/2J mice received EtOH (1, 2, 3, or 4 g/kg, intraperitoneally [i.p.]) or saline and were euthanized 1 hour later. For the time-course study, mice received EtOH (2 g/kg, i.p.) and were euthanized 15, 30, 60, and 120 minutes later. Steroids were measured by radioimmunoassay. RESULTS: Acute EtOH administration did not alter cerebrocortical and hippocampal levels of allopregnanolone and progesterone in these strains at any of the doses and time points examined. Acute EtOH dose-dependently increased cerebrocortical corticosterone levels by 319, 347, and 459% in C57BL/6J mice at the doses of 2, 3, and 4 g/kg, and by 371, 507, 533, and 692% in DBA/2J mice at the doses of 1, 2, 3, and 4 g/kg, respectively. Similar changes were observed in the hippocampus. EtOH's effects on cerebrocortical corticosterone levels were also time dependent in both strains. Moreover, acute EtOH administration time-dependently increased plasma levels of progesterone and corticosterone. Finally, morphine administration increased cerebrocortical allopregnanolone levels in C57BL/6J (+77, +93, and +88% at 5, 10, and 30 mg/kg, respectively) and DBA/2J mice (+81% at 5 mg/kg), suggesting that the impairment in brain neurosteroidogenesis may be specific to EtOH. CONCLUSIONS: These results underline important species differences on EtOH-induced brain neurosteroidogenesis. Acute EtOH increases brain and plasma corticosterone levels but does not alter cerebrocortical and hippocampal concentrations of allopregnanolone and progesterone in naïve C57BL/6J and DBA/2J mice.


Asunto(s)
Corteza Cerebral/metabolismo , Etanol/administración & dosificación , Hipocampo/metabolismo , Pregnanolona/sangre , Animales , Corteza Cerebral/efectos de los fármacos , Hipocampo/efectos de los fármacos , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Especificidad de la Especie
13.
J Appl Clin Med Phys ; 15(1): 4494, 2014 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-24423845

RESUMEN

Deep inspiration breath hold (DIBH) in left-sided breast cancer radiotherapy treatments allows for a reduction in cardiac and pulmonary doses without compromising target coverage. The selection of the most appropriate technology for DIBH monitoring is a crucial issue. We evaluated the stability and reproducibility of DIBHs controlled by a spirometric device, by assessing the variability of the external surface position within a single DIBH (intra-DIBH) and between DIBHs performed in the same treatment session (intrafraction) or in different sessions (interfraction). The study included seven left-breast cancer patients treated with spirometer-based DIBH radiotherapy. Infrared optical tracking was used to record the 3D coordinates of seven to eleven passive markers placed on the patient's thoraco-abdominal surface during 29-43 DIBHs performed in six to eight treatment sessions. The obtained results showed displacements of the external surface between different sessions up to 6.3mm along a single direction, even at constant inspired volumes. The median value of the interfraction variability in the position of breast passive markers was 2.9 mm (range 1.9-4.8 mm) in the latero-lateral direction, 3.6 mm (range 2.2-4.6mm) in the antero-posterior direction, and 4.3mm (range 2.8-6.2 mm) in the cranio-caudal direction. There were no significant dose distribution variations for target and organs at risk with respect to the treatment plan, confirming the adequacy of the applied clinical margins (15 mm) to compensate for the measured setup uncertainties. This study demonstrates that spirometer-based control does not guarantee a stable and reproducible position of the external surface in left-breast DIBH radiotherapy, suggesting the need for more robust DIBH monitoring techniques when reduced margins and setup uncertainties are required for improving normal tissue sparing and decreasing cardiac and pulmonary toxicity.


Asunto(s)
Neoplasias de la Mama/radioterapia , Corazón/efectos de la radiación , Pulmón/efectos de la radiación , Traumatismos por Radiación/prevención & control , Monitoreo de Radiación , Respiración , Espirometría/métodos , Algoritmos , Simulación por Computador , Femenino , Humanos , Fantasmas de Imagen , Pronóstico , Dosificación Radioterapéutica , Radioterapia Adyuvante , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X
14.
Artículo en Inglés | MEDLINE | ID: mdl-37926338

RESUMEN

Hormonal contraceptives are among the most widely used drugs by young healthy women to block ovulation and avoid pregnancy. They reduce the ovarian secretion of estradiol and progesterone, hormones that also modulate neuronal plasticity, cognitive functions, emotions and mood. Cannabis is the most commonly used illicit drug worldwide and its use is increasing among young women, many of which regularly take the "pill". Despite evidence of a bidirectional interaction between the endocannabinoid system and gonadal hormones, only very few studies have examined the consequences of cannabis consumption in young females under hormonal contraceptives treatment. To fill this gap, this study evaluated the behavioral effects of co-exposure to chronic 1) hormonal contraceptives, i.e., ethinyl estradiol (EE) plus levonorgestrel (LNG), one of the synthetic estrogen-progestin combinations of hormonal contraceptives, and 2) cannabinoid receptor agonist, i.e., WIN 55,212-2 (WIN), on motor activity, emotional state and cognitive functions in young adult female rats (8-11/experimental group). Hormonal and cannabinoid treatment started at post-natal day (PND) 52 and 56, respectively, while behavioral testing occurred between PND 84-95. The results show that chronic EE-LNG treatment, at doses (0.020 and 0.060 mg/rat, respectively) known to drastically reduce plasma progesterone levels, and the contextual exposure to WIN, at a dose (12.5 µg/kg/infusion) known to be rewarding in the rat, alters the hormonal milieu but does not cause further changes in locomotor activity compared to EE-LNG or WIN alone, and does not modify anxiety-like state (as measured by the elevated plus maze and the marble burying tests) and cognitive abilities (as measured by the novel object recognition and the prepulse inhibition tests) in young adult female rats. Although exposure to EE-LNG and WIN tends to increase the duration of immobility and to reduce the time spent swimming in the forced swimming test, there was not a significant additive effect suggestive of a depressive-like state. These findings allow deepening the current knowledge on the interaction between cannabinoid agonists and hormonal contraceptives and suggest that low, rewarding doses of cannabinoids do not significantly alter the motor and cognitive skills and do not induce anxiety or depressive-like states in females that use hormonal contraceptives.


Asunto(s)
Cannabinoides , Progesterona , Adulto Joven , Femenino , Ratas , Humanos , Animales , Progesterona/farmacología , Anticonceptivos Orales Combinados/farmacología , Cannabinoides/farmacología , Estradiol , Estrógenos
15.
Biomolecules ; 14(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38397408

RESUMEN

Previous work from our laboratory demonstrated that parental stress, induced by social isolation starting at puberty, leads to behavioral, endocrine, and biochemical changes in the male, but not female, offspring (ISO-O) of Sprague-Dawley rats. Here, we report alterations in the gut microbiota composition of ISO-O vs. grouped-housed offspring (GH-O), although all animals received the same diet and were housed in the same conditions. Analysis of bacterial communities by next-generation sequencing (NGS) of 16S rRNA gene revealed alterations at family and order levels within the main phyla of Bacteroides, Proteobacteria, and Firmicutes, including an almost total deficit in Limosilactobacillus reuteri (formerly Lactobacillus reuteri) and a significant increase in Ligilactobacillus murinus (formerly Lactobacillus murinus). In addition, we found an increase in the relative abundance of Rhodospirillales and Clostridiales in the families of Lachnospiraceae and Ruminococcaceae, and Bacteroidales in the family of Prevotellaceae. Furthermore, we examined plasma levels of the proinflammatory cytokines interleukin-1-beta and tumor necrosis factor-alpha, which did not differ between the two groups, while corticosterone concentrations were significantly increased in ISO-O rats. Our findings suggest that adverse environmental conditions experienced by parents may have an impact on the likelihood of disease development in the subsequent generations.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillus , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Aislamiento Social
16.
Neuropharmacology ; 254: 109993, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735368

RESUMEN

In the last decades, the consumption of energy drinks has risen dramatically, especially among young people, adolescents and athletes, driven by the constant search for ergogenic effects, such as the increase in physical and cognitive performance. In parallel, mixed consumption of energy drinks and ethanol, under a binge drinking modality, under a binge drinking modality, has similarly grown among adolescents. However, little is known whether the combined consumption of these drinks, during adolescence, may have long-term effects on central function, raising the question of the risks of this habit on brain maturation. Our study was designed to evaluate, by behavioral, electrophysiological and molecular approaches, the long-term effects on hippocampal plasticity of ethanol (EtOH), energy drinks (EDs), or alcohol mixed with energy drinks (AMED) in a rat model of binge-like drinking adolescent administration. The results show that AMED binge-like administration produces adaptive hippocampal changes at the molecular level, associated with electrophysiological and behavioral alterations, which develop during the adolescence and are still detectable in adult animals. Overall, the study indicates that binge-like drinking AMED adolescent exposure represents a habit that may affect permanently hippocampal plasticity.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Bebidas Energéticas , Etanol , Hipocampo , Plasticidad Neuronal , Animales , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Etanol/farmacología , Etanol/administración & dosificación , Masculino , Bebidas Energéticas/efectos adversos , Plasticidad Neuronal/efectos de los fármacos , Ratas , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Ratas Wistar , Depresores del Sistema Nervioso Central/farmacología , Depresores del Sistema Nervioso Central/toxicidad
17.
Front Behav Neurosci ; 17: 1257417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915532

RESUMEN

Introduction: Early social isolation (ESI) disrupts neurodevelopmental processes, potentially leading to long-lasting emotional and cognitive changes in adulthood. Communal nesting (CN), i.e., the sharing of parental responsibilities between multiple individuals in a nest, creates a socially enriching environment known to impact social and anxiety-related behaviors. Methods: This study examines the effects of (i) the CN condition and of (ii) ESI during the 3rd week of life (i.e., pre-weaning ESI) on motor, cognitive, and emotional domains during adolescence and adulthood in male and female rats reared in the two different housing conditions, as well as (iii) the potential of CN to mitigate the impact of ESI on offspring. Results: We found that in a spontaneous locomotor activity test, females exhibited higher activity levels compared to males. In female groups, adolescents reared in standard housing (SH) condition spent less time in the center of the arena, suggestive of increased anxiety levels, while the CN condition increased the time spent in the center during adolescence, but not adulthood, independently from ESI. The prepulse inhibition (PPI) test showed a reduced PPI in ESI adolescent animals of both sexes and in adult males (but not in adult females), with CN restoring PPI in males, but not in adolescent females. Further, in the marble burying test SH-ESI adolescent males exhibited higher marble burying behavior than all other groups, suggestive of obsessive-compulsive traits. CN completely reversed this stress-induced effect. Interestingly, ESI and CN did not have a significant impact on burying behavior in adult animals of both sexes. Discussion: Overall, our findings (i) assess the effects of ESI on locomotion, sensorimotor gating, and compulsive-like behaviors, (ii) reveal distinct vulnerabilities of males and females within these domains, and (iii) show how early-life social enrichment may successfully counteract some of the behavioral alterations induced by early-life social stress in a sex-dependent manner. This study strengthens the notion that social experiences during early-life can shape emotional and cognitive outcomes in adulthood, and points to the importance of social enrichment interventions for mitigating the negative effects of early social stress on neurodevelopment.

18.
Biomolecules ; 12(9)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36139100

RESUMEN

The neuroactive steroid allopregnanolone ((3α,5α)-3-hydroxypregnan-20-one or 3α,5α-THP) plays a key role in the response to stress, by normalizing hypothalamic-pituitary-adrenal (HPA) axis function to restore homeostasis. Most studies have been conducted on male rats, and little is known about the allopregnanolone response to stress in females, despite that women are more susceptible than men to develop emotional and stress-related disorders. Here, we provide an overview of animal and human studies examining the allopregnanolone responses to acute stress in females in the context of stress-related neuropsychiatric diseases and under the different conditions that characterize the female lifespan associated with the reproductive function. The blunted allopregnanolone response to acute stress, often observed in female rats and women, may represent one of the mechanisms that contribute to the increased vulnerability to stress and affective disorders in women under the different hormonal fluctuations that occur throughout their lifespan. These studies highlight the importance of targeting neuroactive steroids as a therapeutic approach for stress-related disorders in women.


Asunto(s)
Neuroesteroides , Pregnanolona , Animales , Femenino , Humanos , Sistema Hipotálamo-Hipofisario , Masculino , Sistema Hipófiso-Suprarrenal , Ratas
19.
Biomedicines ; 10(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36289598

RESUMEN

The illicit drug market of novel psychoactive substances (NPSs) is expanding, becoming an alarming threat due to increasing intoxication cases and insufficient (if any) knowledge of their effects. Phenethylamine 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) and synthetic cathinone 3,4-methylenedioxy-α-pyrrolidinohexanophenone (3,4-MDPHP) are new, emerging NPSs suggested to be particularly dangerous. This study verified whether these two new drugs (i) possess abuse liability, (ii) alter plasma corticosterone levels, and (iii) interfere with dopaminergic transmission; male and female adolescent rats were included to evaluate potential sex differences in the drug-induced effects. Findings show that the two NPSs are not able to sustain reliable self-administration behavior in rats, with cumulatively earned injections of drugs being not significantly different from cumulatively earned injections of saline in control groups. Yet, at the end of the self-administration training, females (but not males) exhibited higher plasma corticosterone levels after chronic exposure to low levels of 3,4-MDPHP (but not of 2-Cl-4,5-MDMA). Finally, electrophysiological patch-clamp recordings in the rostral ventral tegmental area (rVTA) showed that both drugs are able to increase the firing rate of rVTA dopaminergic neurons in males but not in females, confirming the sex dimorphic effects of these two NPSs. Altogether, this study demonstrates that 3,4-MDPHP and 2-Cl-4,5-MDMA are unlikely to induce dependence in occasional users but can induce other effects at both central and peripheral levels that may significantly differ between males and females.

20.
Plast Reconstr Surg Glob Open ; 9(9): e3738, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34548996

RESUMEN

BACKGROUND: The combination of surgery and postoperative radiotherapy allows for the most effective results with keloids. In this trial, surgery and intraoperative radiation therapy (IORT) technology were used-the hypothesis being that the earlier the application of postoperative radiotherapy, the better the wound healing evolution. METHODS: The study included 16 patients with 21 keloids. The keloids were radically excised and repaired with direct suture or local skin flaps. Collimated electron radiotherapy was applied within 45 minutes of surgery. The outcomes were assessed according to the modified Patient and Observer Scar Assessment Scale; the modified Vancouver Scar Scale; and the modified Common Terminology Criteria for Adverse Events v. 4.0 for skin and subcutaneous tissue disorders. RESULTS: Recurrences were observed in one out of 16 patients, and in two out of 21 keloids (9.5%). The modified Patient and Observer Scar Assessment Scale demonstrated a statistically significant improvement in pain, itching, color, stiffness, thickness, and irregularity after the treatment. The modified Patient and Observer Scar Assessment Scale displayed a statistically significant improvement in the scar vascularity, pigmentation, thickness, and pliability after the treatment. The modified Vancouver Scar Scale demonstrated a statistically significant improvement in 90.48% of the scars after the treatment. The modified Common Terminology Criteria for Adverse Events v. 4.0 for skin and subcutaneous tissue disorders demonstrated an improvement in erythema multiforme and skin pain across the whole sample, with a temporary hyperpigmentation in 19% of the scars after the treatment. CONCLUSION: The combination of surgery and collimated electron radiotherapy with IORT technology demonstrated favorable results in 90.5% of the cases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA