Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO J ; 41(23): e111344, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36031863

RESUMEN

Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen-deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a ß-turn in the earliest foldon and by signal peptide-mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.


Asunto(s)
Pliegue de Proteína , Señales de Clasificación de Proteína , Señales de Clasificación de Proteína/genética , Proteínas/metabolismo , Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas
2.
EMBO Rep ; 21(6): e49054, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32307852

RESUMEN

Bacterial secretory preproteins are translocated across the inner membrane post-translationally by the SecYEG-SecA translocase. Mature domain features and signal peptides maintain preproteins in kinetically trapped, largely soluble, folding intermediates. Some aggregation-prone preproteins require chaperones, like trigger factor (TF) and SecB, for solubility and/or targeting. TF antagonizes the contribution of SecB to secretion by an unknown molecular mechanism. We reconstituted this interaction in vitro and studied targeting and secretion of the model preprotein pro-OmpA. TF and SecB display distinct, unsuspected roles in secretion. Tightly associating TF:pro-OmpA targets the translocase at SecA, but TF prevents pro-OmpA secretion. In solution, SecB binds TF:pro-OmpA with high affinity. At the membrane, when bound to the SecA C-tail, SecB increases TF and TF:pro-OmpA affinities for the translocase and allows pro-OmpA to resume translocation. Our data reveal that TF, a main cytoplasmic folding pathway chaperone, is also a bona fide post-translational secretory chaperone that directly interacts with both SecB and the translocase to mediate regulated protein secretion. Thus, TF links the cytoplasmic folding and secretion chaperone networks.


Asunto(s)
Proteínas de Escherichia coli , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fibrinógeno , Unión Proteica , Canales de Translocación SEC/genética , Vías Secretoras
3.
EMBO J ; 36(23): 3517-3531, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29109154

RESUMEN

Type III secretion (T3S), a protein export pathway common to Gram-negative pathogens, comprises a trans-envelope syringe, the injectisome, with a cytoplasm-facing translocase channel. Exported substrates are chaperone-delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first "translocators", then "effectors". We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane-associated pseudo-effector SepL and its chaperone SepD. This renders SepL a high-affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD-coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.


Asunto(s)
Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Membrana Celular/metabolismo , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/genética
4.
Trends Biochem Sci ; 41(2): 175-189, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26520801

RESUMEN

The Type III secretion system (T3SS) is a protein export pathway that is widespread in Gram-negative bacteria and delivers effector proteins directly into eukaryotic cells. At its core lie the injectisome (a sophisticated transmembrane secretion apparatus) and a complex network of specialized chaperones that target secretory proteins to the antechamber of the injectisome. The assembly of the system, and the subsequent secretion of proteins through it, undergo fine-tuned, hierarchical regulation. Here, we present the current understanding of the injectisome assembly process, secretion hierarchy, and the role of chaperones. We discuss these events in light of available structural and biochemical dissection and propose future directions essential to revealing mechanistic insight into this fascinating nanomachine.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Nanotecnología , Proteínas Bacterianas/metabolismo
5.
Mol Cell ; 44(5): 734-44, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22152477

RESUMEN

Protein-protein interactions mediate a vast number of cellular processes. Here, we present a regulatory mechanism in protein-protein interactions mediated by finely tuned structural instability and coupled with molecular mimicry. We show that a set of type III secretion (TTS) autoinhibited homodimeric chaperones adopt a molten globule-like state that transiently exposes the substrate binding site as a means to become rapidly poised for binding to their cognate protein substrates. Packing defects at the homodimeric interface stimulate binding, whereas correction of these defects results in less labile chaperones that give rise to nonfunctional biological systems. The protein substrates use structural mimicry to offset the weak spots in the chaperones and to counteract their autoinhibitory conformation. This regulatory mechanism of protein activity is evolutionarily conserved among several TSS systems and presents a lucid example of functional advantage conferred upon a biological system by finely tuned structural instability.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Modelos Moleculares , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Imitación Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica
6.
J Mol Biol ; 435(11): 167954, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37330284

RESUMEN

The flagellum is a sophisticated nanomachine responsible for motility in Gram-negative bacteria. Flagellar assembly is a strictly choreographed process, in which the motor and export gate are formed first, followed by the extracellular propeller structure. Extracellular flagellar components are escorted to the export gate by dedicated molecular chaperones for secretion and self-assembly at the apex of the emerging structure. The detailed mechanisms of chaperone-substrate trafficking at the export gate remain poorly understood. Here, we structurally characterized the interaction of Salmonella enterica late-stage flagellar chaperones FliT and FlgN with the export controller protein FliJ. Previous studies showed that FliJ is absolutely required for flagellar assembly since its interaction with chaperone-client complexes controls substrate delivery to the export gate. Our biophysical and cell-based data show that FliT and FlgN bind FliJ cooperatively, with high affinity and on specific sites. Chaperone binding completely disrupts the FliJ coiled-coil structure and alters its interactions with the export gate. We propose that FliJ aids the release of substrates from the chaperone and forms the basis of chaperone recycling during late-stage flagellar assembly.


Asunto(s)
Proteínas Bacterianas , Flagelos , Chaperonas Moleculares , Salmonella enterica , Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Flagelos/metabolismo , Chaperonas Moleculares/metabolismo , Transporte de Proteínas , Salmonella enterica/metabolismo
7.
Cell Rep ; 38(6): 110346, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139375

RESUMEN

Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly "catch and release" trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Transporte Biológico/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteína SecA/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Conformación Proteica , Señales de Clasificación de Proteína/fisiología , Canales de Translocación SEC/metabolismo
8.
Structure ; 29(8): 846-858.e7, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33852897

RESUMEN

The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA. Using atomistic simulations, smFRET, and HDX-MS, we reveal multiple dynamic islands that cross-talk with domain and quaternary motions. These dynamic elements are functionally important and conserved. Central to the nexus is a slender stem through which rotation of the preprotein clamp of SecA is biased by ATPase domain motions between open and closed clamping states. An H-bonded framework covering most of SecA enables multi-tier dynamics and conformational alterations with minimal energy input. As a result, cognate ligands select preexisting conformations and alter local dynamics to regulate catalytic activity and clamp motions. These events prime the translocase for high-affinity reception of non-folded preprotein clients. Dynamics nexuses are likely universal and essential in multi-liganded proteins.


Asunto(s)
Bacillus subtilis/enzimología , Canales de Translocación SEC/metabolismo , Proteína SecA/química , Proteína SecA/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Unión Proteica , Conformación Proteica , Dominios Proteicos
9.
J Mol Biol ; 433(21): 167188, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34454944

RESUMEN

Type III protein secretion is widespread in Gram-negative pathogens. It comprises the injectisome with a surface-exposed needle and an inner membrane translocase. The translocase contains the SctRSTU export channel enveloped by the export gate subunit SctV that binds chaperone/exported clients and forms a putative ante-chamber. We probed the assembly, function, structure and dynamics of SctV from enteropathogenic E. coli (EPEC). In both EPEC and E. coli lab strains, SctV forms peripheral oligomeric clusters that are detergent-extracted as homo-nonamers. Membrane-embedded SctV9 is necessary and sufficient to act as a receptor for different chaperone/exported protein pairs with distinct C-domain binding sites that are essential for secretion. Negative staining electron microscopy revealed that peptidisc-reconstituted His-SctV9 forms a tripartite particle of ∼22 nm with a N-terminal domain connected by a short linker to a C-domain ring structure with a ∼5 nm-wide inner opening. The isolated C-domain ring was resolved with cryo-EM at 3.1 Å and structurally compared to other SctV homologues. Its four sub-domains undergo a three-stage "pinching" motion. Hydrogen-deuterium exchange mass spectrometry revealed this to involve dynamic and rigid hinges and a hyper-flexible sub-domain that flips out of the ring periphery and binds chaperones on and between adjacent protomers. These motions are coincident with local conformational changes at the pore surface and ring entry mouth that may also be modulated by the ATPase inner stalk. We propose that the intrinsic dynamics of the SctV protomer are modulated by chaperones and the ATPase and could affect allosterically the other subunits of the nonameric ring during secretion.


Asunto(s)
Adenosina Trifosfatasas/química , Escherichia coli Enteropatógena/ultraestructura , Proteínas de Escherichia coli/química , Flagelos/ultraestructura , Canales de Translocación SEC/química , Sistemas de Secreción Tipo III/ultraestructura , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Regulación Alostérica , Sitios de Unión , Clonación Molecular , Microscopía por Crioelectrón , Medición de Intercambio de Deuterio , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/genética , Flagelos/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Espectrometría de Masas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Especificidad por Sustrato , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
10.
Microorganisms ; 8(11)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202599

RESUMEN

The type 3 secretion system is essential for pathogenesis of several human and animal Gram-negative bacterial pathogens. The T3SS comprises a transmembrane injectisome, providing a conduit from the bacterial cytoplasm to the host cell cytoplasm for the direct delivery of effectors (including toxins). Functional studies of T3SS commonly monitor the extracellular secretion of proteins by SDS-PAGE and western blot analysis, which are slow and semi-quantitative in nature. Here, we describe an enzymatic reporter-based quantitative and rapid in vivo assay for T3SS secretion studies in enteropathogenic E. coli (EPEC). The assay monitors the secretion of the fusion protein SctA-PhoA through the injectisome based on a colorimetric assay that quantifies the activity of alkaline phosphatase. We validated the usage of this reporter system by following the secretion in the absence of various injectisome components, including domains of the gatekeeper essential for T3SS function. This platform can now be used for the isolation of mutations, functional analysis and anti-virulence compound screening.

11.
Structure ; 27(1): 90-101.e6, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30471924

RESUMEN

SecA converts ATP energy to protein translocation work. Together with the membrane-embedded SecY channel it forms the bacterial protein translocase. How secretory proteins bind to SecA and drive conformational cascades to promote their secretion remains unknown. To address this, we focus on the preprotein binding domain (PBD) of SecA. PBD crystalizes in three distinct states, swiveling around its narrow stem. Here, we examined whether PBD displays intrinsic dynamics in solution using single-molecule Förster resonance energy transfer (smFRET). Unique cysteinyl pairs on PBD and apposed domains were labeled with donor/acceptor dyes. Derivatives were analyzed using pulsed interleaved excitation and multi-parameter fluorescence detection. The PBD undergoes significant rotational motions, occupying at least three distinct states in dimeric and four in monomeric soluble SecA. Nucleotides do not affect smFRET-detectable PBD dynamics. These findings lay the foundations for single-molecule dissection of translocase mechanics and suggest models for possible PBD involvement during catalysis.


Asunto(s)
Proteínas de Escherichia coli/química , Simulación de Dinámica Molecular , Proteína SecA/química , Sitios de Unión , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Nucleótidos/química , Nucleótidos/metabolismo , Unión Proteica , Proteína SecA/metabolismo
12.
Structure ; 26(5): 695-707.e5, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29606594

RESUMEN

Secretory preproteins carry signal peptides fused amino-terminally to mature domains. They are post-translationally targeted to cross the plasma membrane in non-folded states with the help of translocases, and fold only at their final destinations. The mechanism of this process of postponed folding is unknown, but is generally attributed to signal peptides and chaperones. We herein demonstrate that, during targeting, most mature domains maintain loosely packed folding intermediates. These largely soluble states are signal peptide independent and essential for translocase recognition. These intermediates are promoted by mature domain features: residue composition, elevated disorder, and reduced hydrophobicity. Consequently, a mature domain folds slower than its cytoplasmic structural homolog. Some mature domains could not evolve stable, loose intermediates, and hence depend on signal peptides for slow folding to the detriment of solubility. These unique features of secretory proteins impact our understanding of protein trafficking, folding, and aggregation, and thus place them in a distinct class.


Asunto(s)
Señales de Clasificación de Proteína , Proteínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dominios Proteicos , Pliegue de Proteína , Transporte de Proteínas , Proteínas/metabolismo
13.
Cell Rep ; 3(3): 709-15, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23523349

RESUMEN

The targeting of type III secretion (TTS) proteins at the injectisome is an important process in bacterial virulence. Nevertheless, how the injectisome specifically recognizes TTS substrates among all bacterial proteins is unknown. A TTS peripheral membrane ATPase protein located at the base of the injectisome has been implicated in the targeting process. We have investigated the targeting of the EspA filament protein and its cognate chaperone, CesAB, to the EscN ATPase of the enteropathogenic E. coli (EPEC). We show that EscN selectively engages the EspA-loaded CesAB but not the unliganded CesAB. Structure analysis revealed that the targeting signal is encoded in a disorder-order structural transition in CesAB that is elicited only upon the binding of its physiological substrate, EspA. Abrogation of the interaction between the CesAB-EspA complex and EscN resulted in severe secretion and infection defects. Additionally, we show that the targeting and secretion signals are distinct and that the two processes are likely regulated by different mechanisms.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Chaperonas Moleculares/química , Señales de Clasificación de Proteína , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA