Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 92(23): 15604-15610, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33170642

RESUMEN

Primary-ion-induced fragmentation in organic molecules can strongly influence the results in secondary-ion mass spectrometry (SIMS) of organic and biomolecular samples. In order to characterize this ion-induced fragmentation, oligopeptide samples irradiated in SIMS experiments were investigated by means of desorption/ionization induced by neutral SO2 clusters (DINeC). The latter is a nondestructive desorption method for mass spectrometry of biomolecules, which gives direct access to the fragments induced in the sample. Comparison of TOF-SIMS and DINeC mass spectra revealed qualitative differences between the fragments, which remain in the sample and the fragments sputtered during ion bombardment. The fragmentation strength and its spatial distribution were found to be quantitatively different for Bi1+, Bi3+, and Ar1000+ primary ions, leading to different distributions of the degree of fragmentation in the samples as directly measured by means of DINeC depth profiles.


Asunto(s)
Fragmentos de Péptidos/química , Espectrometría de Masa de Ion Secundario/métodos , Dióxido de Azufre/química
2.
J Chem Phys ; 146(13): 134705, 2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28390387

RESUMEN

The influence of the chemical nature of the cluster constituents on the desorption/ionization process was investigated for desorption/ionization induced by neutral SO2 clusters (DINeC). The polar clusters act as a transient matrix in which the desorbed analyte molecules are dissolved during the desorption process. For drop-cast samples, the desorption/ionization efficiency was found to be largely independent of the pH value of the initial solution the samples were prepared from; positive ions were almost always dominant and no multiply charged negative ions were observed. The results were traced back to the interaction of SO2 with water present in the samples. Both H/D exchange experiments and surface charge measurements showed that SO2 from the cluster beam interacts with water on and in the sample forming sulfurous acid. The latter then acts as an efficient proton supply leading to an enhanced ionization efficiency. The results demonstrate the possibility to control the ionization efficiency when using reactive cluster constituents in desorption-based ionization methods such as DINeC and cluster-based secondary ion mass spectrometry.

3.
Nanoscale ; 10(10): 4952-4961, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29485651

RESUMEN

Aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM) has enabled atomically resolved imaging of molecules adsorbed on low-dimensional materials like carbon nanotubes, graphene oxide and few-layer-graphene. However, conventional methods for depositing molecules onto such supports lack selectivity and specificity. Here, we describe the chemically selective preparation and deposition of molecules-like polyoxometalate (POM) anions [PW12O40]3- using electrospray ion-beam deposition (ES-IBD) along with high-resolution TEM imaging. This approach provides access to sub-monolayer coatings of intact molecules on freestanding graphene, which enables their atomically resolved ex situ characterization by low-voltage AC-HRTEM. The capability to tune the deposition parameters in either soft or reactive landing mode, combined with the well-defined high-vacuum deposition conditions, renders the ES-IBD based method advantageous over alternative methods such as drop-casting. Furthermore, it might be expanded towards depositing and imaging large and nonvolatile molecules with complex structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA