Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bull Math Biol ; 86(3): 31, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353870

RESUMEN

To characterize Coronavirus Disease 2019 (COVID-19) transmission dynamics in each of the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix in 2020 and 2021, we extended a previously reported compartmental model accounting for effects of multiple distinct periods of non-pharmaceutical interventions by adding consideration of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2). For each MSA, we found region-specific parameterizations of the model using daily reports of new COVID-19 cases available from January 21, 2020 to October 31, 2021. In the process, we obtained estimates of the relative infectiousness of Alpha and Delta as well as their takeoff times in each MSA (the times at which sustained transmission began). The estimated infectiousness of Alpha ranged from 1.1x to 1.4x that of viral strains circulating in 2020 and early 2021. The estimated relative infectiousness of Delta was higher in all cases, ranging from 1.6x to 2.1x. The estimated Alpha takeoff times ranged from February 1 to February 28, 2021. The estimated Delta takeoff times ranged from June 2 to June 26, 2021. Estimated takeoff times are consistent with genomic surveillance data.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estados Unidos/epidemiología , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/prevención & control , Conceptos Matemáticos , Modelos Biológicos , Vacunación
2.
Bioinformatics ; 38(6): 1770-1772, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986226

RESUMEN

SUMMARY: Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty. AVAILABILITY AND IMPLEMENTATION: PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , Humanos , Cadenas de Markov , Teorema de Bayes , Algoritmos , Programas Informáticos , Método de Montecarlo
3.
Emerg Infect Dis ; 27(3): 767-778, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33622460

RESUMEN

To increase situational awareness and support evidence-based policymaking, we formulated a mathematical model for coronavirus disease transmission within a regional population. This compartmental model accounts for quarantine, self-isolation, social distancing, a nonexponentially distributed incubation period, asymptomatic persons, and mild and severe forms of symptomatic disease. We used Bayesian inference to calibrate region-specific models for consistency with daily reports of confirmed cases in the 15 most populous metropolitan statistical areas in the United States. We also quantified uncertainty in parameter estimates and forecasts. This online learning approach enables early identification of new trends despite considerable variability in case reporting.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Epidemias , Predicción/métodos , Teorema de Bayes , Coronavirus , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Epidemias/prevención & control , Humanos , Incidencia , Modelos Teóricos , Incertidumbre , Estados Unidos/epidemiología
4.
Semin Cancer Biol ; 54: 162-173, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29518522

RESUMEN

RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.


Asunto(s)
Regulación de la Expresión Génica , Modelos Biológicos , Transducción de Señal , Proteínas ras/genética , Proteínas ras/metabolismo , Animales , Proteínas Portadoras , Descubrimiento de Drogas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica , Transporte de Proteínas , Biología de Sistemas/métodos , Proteínas ras/antagonistas & inhibidores , Proteínas ras/química
5.
PLoS Comput Biol ; 15(1): e1006706, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30653502

RESUMEN

Receptor tyrosine kinases (RTKs) typically contain multiple autophosphorylation sites in their cytoplasmic domains. Once activated, these autophosphorylation sites can recruit downstream signaling proteins containing Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains, which recognize phosphotyrosine-containing short linear motifs (SLiMs). These domains and SLiMs have polyspecific or promiscuous binding activities. Thus, multiple signaling proteins may compete for binding to a common SLiM and vice versa. To investigate the effects of competition on RTK signaling, we used a rule-based modeling approach to develop and analyze models for ligand-induced recruitment of SH2/PTB domain-containing proteins to autophosphorylation sites in the insulin-like growth factor 1 (IGF1) receptor (IGF1R). Models were parameterized using published datasets reporting protein copy numbers and site-specific binding affinities. Simulations were facilitated by a novel application of model restructuration, to reduce redundancy in rule-derived equations. We compare predictions obtained via numerical simulation of the model to those obtained through simple prediction methods, such as through an analytical approximation, or ranking by copy number and/or KD value, and find that the simple methods are unable to recapitulate the predictions of numerical simulations. We created 45 cell line-specific models that demonstrate how early events in IGF1R signaling depend on the protein abundance profile of a cell. Simulations, facilitated by model restructuration, identified pairs of IGF1R binding partners that are recruited in anti-correlated and correlated fashions, despite no inclusion of cooperativity in our models. This work shows that the outcome of competition depends on the physicochemical parameters that characterize pairwise interactions, as well as network properties, including network connectivity and the relative abundances of competitors.


Asunto(s)
Modelos Biológicos , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/fisiología , Animales , Sitios de Unión , Línea Celular , Análisis por Conglomerados , Biología Computacional , Humanos , Ratones , Fosforilación , Unión Proteica , Proteínas/química , Proteínas/metabolismo , Dominios Homologos src
6.
Br J Cancer ; 117(4): 572-582, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28720843

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer with complex genomes and dense fibrotic stroma. This study was designed to identify clinically relevant somatic aberrations in pancreatic cancer genomes of patients with primary and metastatic disease enrolled and treated in two clinical trials. METHODS: Tumour nuclei were flow sorted prior to whole genome copy number variant (CNV) analysis. Targeted or whole exome sequencing was performed on most samples. We profiled biopsies from 68 patients enrolled in two Stand Up to Cancer (SU2C)-sponsored clinical trials. These included 38 resected chemoradiation naïve tumours (SU2C 20206-003) and metastases from 30 patients who progressed on prior therapies (SU2C 20206-001). Patient outcomes including progression-free survival (PFS) and overall survival (OS) were observed. RESULTS: We defined: (a) CDKN2A homozygous deletions that included the adjacent MTAP gene, only its' 3' region, or excluded MTAP; (b) SMAD4 homozygous deletions that included ME2; (c) a pancreas-specific MYC super-enhancer region; (d) DNA repair-deficient genomes; and (e) copy number aberrations present in PDA patients with long-term (⩾ 40 months) and short-term (⩽ 12 months) survival after surgical resection. CONCLUSIONS: We provide a clinically relevant framework for genomic drivers of PDA and for advancing novel treatments.


Asunto(s)
Secuencia de Bases , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Eliminación de Secuencia , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biopsia , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/secundario , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Reparación del ADN/genética , Supervivencia sin Enfermedad , Elementos de Facilitación Genéticos , Exoma , Femenino , Genes myc , Homocigoto , Humanos , Malato Deshidrogenasa/genética , Masculino , Proteínas Asociadas a Microtúbulos/genética , Persona de Mediana Edad , Páncreas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Purina-Nucleósido Fosforilasa/genética , Proteína Smad4/genética , Tasa de Supervivencia , Proteína p53 Supresora de Tumor/genética
7.
Bioinformatics ; 32(5): 798-800, 2016 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-26556387

RESUMEN

UNLABELLED: Rule-based models are analyzed with specialized simulators, such as those provided by the BioNetGen and NFsim open-source software packages. Here, we present BioNetFit, a general-purpose fitting tool that is compatible with BioNetGen and NFsim. BioNetFit is designed to take advantage of distributed computing resources. This feature facilitates fitting (i.e. optimization of parameter values for consistency with data) when simulations are computationally expensive. AVAILABILITY AND IMPLEMENTATION: BioNetFit can be used on stand-alone Mac, Windows/Cygwin, and Linux platforms and on Linux-based clusters running SLURM, Torque/PBS, or SGE. The BioNetFit source code (Perl) is freely available (http://bionetfit.nau.edu). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: bionetgen.help@gmail.com.


Asunto(s)
Programas Informáticos
8.
Biophys J ; 108(7): 1819-1829, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25863072

RESUMEN

Proteins in cell signaling networks tend to interact promiscuously through low-affinity interactions. Consequently, evaluating the physiological importance of mapped interactions can be difficult. Attempts to do so have tended to focus on single, measurable physicochemical factors, such as affinity or abundance. For example, interaction importance has been assessed on the basis of the relative affinities of binding partners for a protein of interest, such as a receptor. However, multiple factors can be expected to simultaneously influence the recruitment of proteins to a receptor (and the potential of these proteins to contribute to receptor signaling), including affinity, abundance, and competition, which is a network property. Here, we demonstrate that measurements of protein copy numbers and binding affinities can be integrated within the framework of a mechanistic, computational model that accounts for mass action and competition. We use cell line-specific models to rank the relative importance of protein-protein interactions in the epidermal growth factor receptor (EGFR) signaling network for 11 different cell lines. Each model accounts for experimentally characterized interactions of six autophosphorylation sites in EGFR with proteins containing a Src homology 2 and/or phosphotyrosine-binding domain. We measure importance as the predicted maximal extent of recruitment of a protein to EGFR following ligand-stimulated activation of EGFR signaling. We find that interactions ranked highly by this metric include experimentally detected interactions. Proteins with high importance rank in multiple cell lines include proteins with recognized, well-characterized roles in EGFR signaling, such as GRB2 and SHC1, as well as a protein with a less well-defined role, YES1. Our results reveal potential cell line-specific differences in recruitment.


Asunto(s)
Conjuntos de Datos como Asunto , Modelos Biológicos , Proteoma/metabolismo , Transducción de Señal , Animales , Receptores ErbB/metabolismo , Células HeLa , Humanos , Proteoma/química , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Dominios Homologos src
9.
medRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-34704095

RESUMEN

To characterize Coronavirus Disease 2019 (COVID-19) transmission dynamics in each of the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix in 2020 and 2021, we extended a previously reported compartmental model accounting for effects of multiple distinct periods of non-pharmaceutical interventions by adding consideration of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2). For each MSA, we found region-specific parameterizations of the model using daily reports of new COVID-19 cases available from January 21, 2020 to October 31, 2021. In the process, we obtained estimates of the relative infectiousness of Alpha and Delta as well as their takeoff times in each MSA (the times at which sustained transmission began). The estimated infectiousness of Alpha ranged from 1.1x to 1.4x that of viral strains circulating in 2020 and early 2021. The estimated relative infectiousness of Delta was higher in all cases, ranging from 1.6x to 2.1x. The estimated Alpha takeoff times ranged from February 1 to February 28, 2021. The estimated Delta takeoff times ranged from June 2 to June 26, 2021. Estimated takeoff times are consistent with genomic surveillance data. One-Sentence Summary: Using a compartmental model parameterized to reproduce available reports of new Coronavirus Disease 2019 (COVID-19) cases, we quantified the impacts of vaccination and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants Alpha (lineage B.1.1.7) and Delta (lineage B.1.617.2) on regional epidemics in the metropolitan statistical areas (MSAs) surrounding Dallas, Houston, New York City, and Phoenix.

10.
medRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824849

RESUMEN

During an early period of the Coronavirus Disease 2019 (COVID-19) pandemic, the Navajo Nation, much like New York City, experienced a relatively high rate of disease transmission. Yet, between January and October 2020, it experienced only a single period of growth in new COVID-19 cases, which ended when cases peaked in May 2020. The daily number of new cases slowly decayed in the summer of 2020 until late September 2020. In contrast, the surrounding states of Arizona, Colorado, New Mexico, and Utah all experienced at least two periods of growth in the same time frame, with second surges beginning in late May to early June. To investigate the causes of this difference, we used a compartmental model accounting for distinct periods of non-pharmaceutical interventions (NPIs ) ( e.g., behaviors that limit disease transmission) to analyze the epidemic in each of the five regions. We used Bayesian inference to estimate region-specific model parameters from regional surveillance data (daily reports of new COVID-19 cases) and to quantify uncertainty in parameter estimates and model predictions. Our results suggest that NPIs in the Navajo Nation were sustained over the period of interest, whereas in the surrounding states, NPIs were relaxed, which allowed for subsequent surges in cases. Our region-specific model parameterizations allow us to quantify the impacts of NPIs on disease incidence in the regions of interest.

11.
PLOS Glob Public Health ; 3(6): e0001490, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342996

RESUMEN

During an early period of the Coronavirus Disease 2019 (COVID-19) pandemic, the Navajo Nation, much like New York City, experienced a relatively high rate of disease transmission. Yet, between January and October 2020, it experienced only a single period of growth in new COVID-19 cases, which ended when cases peaked in May 2020. The daily number of new cases slowly decayed in the summer of 2020 until late September 2020. In contrast, the surrounding states of Arizona, Colorado, New Mexico, and Utah all experienced at least two periods of growth in the same time frame, with second surges beginning in late May to early June. Here, we investigated these differences in disease transmission dynamics with the objective of quantifying the contributions of non-pharmaceutical interventions (NPIs) (e.g., behaviors that limit disease transmission). We considered a compartmental model accounting for distinct periods of NPIs to analyze the epidemic in each of the five regions. We used Bayesian inference to estimate region-specific model parameters from regional surveillance data (daily reports of new COVID-19 cases) and to quantify uncertainty in parameter estimates and model predictions. Our results suggest that NPIs in the Navajo Nation were sustained over the period of interest, whereas in the surrounding states, NPIs were relaxed, which allowed for subsequent surges in cases. Our region-specific model parameterizations allow us to quantify the impacts of NPIs on disease incidence in the regions of interest.

12.
Viruses ; 14(1)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35062361

RESUMEN

Although many persons in the United States have acquired immunity to COVID-19, either through vaccination or infection with SARS-CoV-2, COVID-19 will pose an ongoing threat to non-immune persons so long as disease transmission continues. We can estimate when sustained disease transmission will end in a population by calculating the population-specific basic reproduction number ℛ0, the expected number of secondary cases generated by an infected person in the absence of any interventions. The value of ℛ0 relates to a herd immunity threshold (HIT), which is given by 1-1/ℛ0. When the immune fraction of a population exceeds this threshold, sustained disease transmission becomes exponentially unlikely (barring mutations allowing SARS-CoV-2 to escape immunity). Here, we report state-level ℛ0 estimates obtained using Bayesian inference. Maximum a posteriori estimates range from 7.1 for New Jersey to 2.3 for Wyoming, indicating that disease transmission varies considerably across states and that reaching herd immunity will be more difficult in some states than others. ℛ0 estimates were obtained from compartmental models via the next-generation matrix approach after each model was parameterized using regional daily confirmed case reports of COVID-19 from 21 January 2020 to 21 June 2020. Our ℛ0 estimates characterize the infectiousness of ancestral strains, but they can be used to determine HITs for a distinct, currently dominant circulating strain, such as SARS-CoV-2 variant Delta (lineage B.1.617.2), if the relative infectiousness of the strain can be ascertained. On the basis of Delta-adjusted HITs, vaccination data, and seroprevalence survey data, we found that no state had achieved herd immunity as of 20 September 2021.


Asunto(s)
Número Básico de Reproducción , COVID-19/epidemiología , COVID-19/transmisión , Teorema de Bayes , COVID-19/inmunología , Epidemias , Modelos Epidemiológicos , Humanos , Inmunidad Colectiva , SARS-CoV-2 , Incertidumbre , Estados Unidos/epidemiología
13.
medRxiv ; 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34611664

RESUMEN

Although many persons in the United States have acquired immunity to COVID-19, either through vaccination or infection with SARS-CoV-2, COVID-19 will pose an ongoing threat to non-immune persons so long as disease transmission continues. We can estimate when sustained disease transmission will end in a population by calculating the population-specific basic reproduction number ℛ 0 , the expected number of secondary cases generated by an infected person in the absence of any interventions. The value of ℛ 0 relates to a herd immunity threshold (HIT), which is given by 1 - 1/ℛ 0 . When the immune fraction of a population exceeds this threshold, sustained disease transmission becomes exponentially unlikely (barring mutations allowing SARS-CoV-2 to escape immunity). Here, we report state-level ℛ 0 estimates obtained using Bayesian inference. Maximum a posteriori estimates range from 7.1 for New Jersey to 2.3 for Wyoming, indicating that disease transmission varies considerably across states and that reaching herd immunity will be more difficult in some states than others. ℛ 0 estimates were obtained from compartmental models via the next-generation matrix approach after each model was parameterized using regional daily confirmed case reports of COVID-19 from 21-January-2020 to 21-June-2020. Our ℛ 0 estimates characterize infectiousness of ancestral strains, but they can be used to determine HITs for a distinct, currently dominant circulating strain, such as SARS-CoV-2 variant Delta (lineage B.1.617.2), if the relative infectiousness of the strain can be ascertained. On the basis of Delta-adjusted HITs, vaccination data, and seroprevalence survey data, we find that no state has achieved herd immunity as of 20-September-2021. SIGNIFICANCE STATEMENT: COVID-19 will continue to threaten non-immune persons in the presence of ongoing disease transmission. We can estimate when sustained disease transmission will end by calculating the population-specific basic reproduction number ℛ 0 , which relates to a herd immunity threshold (HIT), given by 1 - 1/ℛ 0 . When the immune fraction of a population exceeds this threshold, sustained disease transmission becomes exponentially unlikely. Here, we report state-level ℛ 0 estimates indicating that disease transmission varies considerably across states. Our ℛ 0 estimates can also be used to determine HITs for the Delta variant of COVID-19. On the basis of Delta-adjusted HITs, vaccination data, and serological survey results, we find that no state has yet achieved herd immunity.

14.
medRxiv ; 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-32743595

RESUMEN

To increase situational awareness and support evidence-based policy-making, we formulated a mathematical model for COVID-19 transmission within a regional population. This compartmental model accounts for quarantine, self-isolation, social distancing, a non-exponentially distributed incubation period, asymptomatic individuals, and mild and severe forms of symptomatic disease. Using Bayesian inference, we have been calibrating region-specific models daily for consistency with new reports of confirmed cases from the 15 most populous metropolitan statistical areas in the United States and quantifying uncertainty in parameter estimates and predictions of future case reports. This online learning approach allows for early identification of new trends despite considerable variability in case reporting. ARTICLE SUMMARY LINE: We report models for regional COVID-19 epidemics and use of Bayesian inference to quantify uncertainty in daily predictions of expected reporting of new cases, enabling identification of new trends in surveillance data.

15.
Biophys J ; 98(1): 48-56, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20085718

RESUMEN

We use flow cytometry to characterize equilibrium binding of a fluorophore-labeled trivalent model antigen to bivalent IgE-FcepsilonRI complexes on RBL cells. We find that flow cytometric measurements are consistent with an equilibrium model for ligand-receptor binding in which binding sites are assumed to be equivalent and ligand-induced receptor aggregates are assumed to be acyclic. However, this model predicts extensive receptor aggregation at antigen concentrations that yield strong cellular secretory responses, which is inconsistent with the expectation that large receptor aggregates should inhibit such responses. To investigate possible explanations for this discrepancy, we evaluate four rule-based models for interaction of a trivalent ligand with a bivalent cell-surface receptor that relax simplifying assumptions of the equilibrium model. These models are simulated using a rule-based kinetic Monte Carlo approach to investigate the kinetics of ligand-induced receptor aggregation and to study how the kinetics and equilibria of ligand-receptor interaction are affected by steric constraints on receptor aggregate configurations and by the formation of cyclic receptor aggregates. The results suggest that formation of linear chains of cyclic receptor dimers may be important for generating secretory signals. Steric effects that limit receptor aggregation and transient formation of small receptor aggregates may also be important.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Inmunoglobulina E/química , Inmunoglobulina E/metabolismo , Modelos Químicos , Receptores de IgE/química , Receptores de IgE/metabolismo , Animales , Sitios de Unión , Línea Celular , Simulación por Computador , Ligandos , Mastocitos/química , Mastocitos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Ratas
16.
BMC Bioinformatics ; 11: 404, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20673321

RESUMEN

BACKGROUND: The system-level dynamics of many molecular interactions, particularly protein-protein interactions, can be conveniently represented using reaction rules, which can be specified using model-specification languages, such as the BioNetGen language (BNGL). A set of rules implicitly defines a (bio)chemical reaction network. The reaction network implied by a set of rules is often very large, and as a result, generation of the network implied by rules tends to be computationally expensive. Moreover, the cost of many commonly used methods for simulating network dynamics is a function of network size. Together these factors have limited application of the rule-based modeling approach. Recently, several methods for simulating rule-based models have been developed that avoid the expensive step of network generation. The cost of these "network-free" simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is now needed for the simulation and analysis of rule-based models of biochemical systems. RESULTS: Here, we present a software tool called RuleMonkey, which implements a network-free method for simulation of rule-based models that is similar to Gillespie's method. The method is suitable for rule-based models that can be encoded in BNGL, including models with rules that have global application conditions, such as rules for intramolecular association reactions. In addition, the method is rejection free, unlike other network-free methods that introduce null events, i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant tool for network-free simulation of rule-based models. We also compare RuleMonkey against problem-specific codes implementing network-free simulation methods. CONCLUSIONS: RuleMonkey enables the simulation of rule-based models for which the underlying reaction networks are large. It is typically faster than DYNSTOC for benchmark problems that we have examined. RuleMonkey is freely available as a stand-alone application http://public.tgen.org/rulemonkey. It is also available as a simulation engine within GetBonNie, a web-based environment for building, analyzing and sharing rule-based models.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Programas Informáticos , Biología de Sistemas/métodos , Internet , Proteínas/metabolismo , Transducción de Señal
17.
Bioinformatics ; 25(11): 1457-60, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19321734

RESUMEN

SUMMARY: GetBonNie is a web-based application for building, analyzing and sharing rule-based models encoded in the BioNetGen language (BNGL). Tools accessible within the GetBonNie environment include (i) an applet for drawing graphs that correspond to BNGL code; (ii) a network-generation engine for translating a set of rules into a chemical reaction network; (iii) simulation engines that implement generate-first, on-the-fly and network-free methods for simulating rule-based models; and (iv) a database for sharing models, parameter values, annotations, simulation tasks and results. AVAILABILITY: GetBonNie is free at (http://getbonnie.org).


Asunto(s)
Almacenamiento y Recuperación de la Información/métodos , Programas Informáticos , Simulación por Computador , Bases de Datos Factuales , Internet , Interfaz Usuario-Computador
18.
Bioinformatics ; 25(7): 910-7, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19213740

RESUMEN

MOTIVATION: Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. RESULTS: DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein-protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of StochSim. DYNSTOC differs from StochSim by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. AVAILABILITY: DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at http://public.tgen.org/dynstoc/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Simulación por Computador , Modelos Biológicos , Programas Informáticos , Sitios de Unión , Internet , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo
19.
ArXiv ; 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32743021

RESUMEN

To increase situational awareness and support evidence-based policy-making, we formulated two types of mathematical models for COVID-19 transmission within a regional population. One is a fitting function that can be calibrated to reproduce an epidemic curve with two timescales (e.g., fast growth and slow decay). The other is a compartmental model that accounts for quarantine, self-isolation, social distancing, a non-exponentially distributed incubation period, asymptomatic individuals, and mild and severe forms of symptomatic disease. Using Bayesian inference, we have been calibrating our models daily for consistency with new reports of confirmed cases from the 15 most populous metropolitan statistical areas in the United States and quantifying uncertainty in parameter estimates and predictions of future case reports. This online learning approach allows for early identification of new trends despite considerable variability in case reporting. We infer new significant upward trends for five of the metropolitan areas starting between 19-April-2020 and 12-June-2020.

20.
iScience ; 19: 1012-1036, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31522114

RESUMEN

In systems biology modeling, important steps include model parameterization, uncertainty quantification, and evaluation of agreement with experimental observations. To help modelers perform these steps, we developed the software PyBioNetFit, which in addition supports checking models against known system properties and solving design problems. PyBioNetFit introduces Biological Property Specification Language (BPSL) for the formal declaration of system properties. BPSL allows qualitative data to be used alone or in combination with quantitative data. PyBioNetFit performs parameterization with parallelized metaheuristic optimization algorithms that work directly with existing model definition standards: BioNetGen Language (BNGL) and Systems Biology Markup Language (SBML). We demonstrate PyBioNetFit's capabilities by solving various example problems, including the challenging problem of parameterizing a 153-parameter model of cell cycle control in yeast based on both quantitative and qualitative data. We demonstrate the model checking and design applications of PyBioNetFit and BPSL by analyzing a model of targeted drug interventions in autophagy signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA