Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Tipo de estudio
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Evol Biol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989853

RESUMEN

Parasite infections are increasingly reported to change the microbiome of the parasitised hosts, while parasites bring their own microbes to what can be a multi-dimensional interaction. For instance, a recent hypothesis suggests that the microbial communities harboured by parasites may play a role in the well-documented ability of many parasites to manipulate host phenotype, and explain why the degree to which host phenotype is altered varies among conspecific parasites. Here, we explored whether the microbiomes of both hosts and parasites are associated with variation in host manipulation by parasites. Using colour quantification methods applied to digital images, we investigated colour variation among uninfected Transorchestia serrulata amphipods, as well as amphipods infected with Plagiorhynchus allisonae acanthocephalans and with a dilepidid cestode. We then characterised the bacteriota of amphipod hosts and of their parasites, looking for correlations between host phenotype and the bacterial taxa associated with hosts and parasites. We found large variation in amphipod colours, and weak support for a direct impact of parasites on the colour of their hosts. Conversely, and most interestingly, the parasite's bacteriota was more strongly correlated with colour variation among their amphipod hosts, with potential impact of amphipod-associated bacteria as well. Some bacterial taxa found associated with amphipods and parasites may have the ability to synthesise pigments, and we propose they may interact with colour determination in the amphipods. This study provides correlational support for an association between the parasite's microbiome and the evolution of host manipulation by parasites and host-parasite interactions more generally.

2.
Syst Parasitol ; 101(3): 34, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700784

RESUMEN

Although most Latin binomial names of species are valid, many are eventually unaccepted when they are found to be synonyms of previously described species, or superseded by a new combination when the species they denote are moved to a different genus. What proportion of parasite species names become unaccepted over time, and how long does it take for incorrect names to become unaccepted? Here, we address these questions using a dataset comprising thousands of species names of parasitic helminths from four higher taxa (Acanthocephala, Nematoda, Cestoda, and Trematoda). Overall, among species names proposed in the past two-and-a-half centuries, nearly one-third have since been unaccepted, the most common reason being that they have been superseded by a new combination. A greater proportion of older names (proposed pre-1950) have since been unaccepted compared to names proposed more recently, however most taxonomic acts leading to species names being unaccepted (through either synonymy or reclassification) occurred in the past few decades. Overall, the average longevity of helminth species names that are currently unaccepted was 29 years; although many remained in use for over 100 years, about 50% of the total were invalidated within 20 years of first being proposed. The patterns observed were roughly the same for all four higher helminth taxa considered here. Our results provide a quantitative illustration of the self-correcting nature of parasite taxonomy, and can also help to calibrate future estimates of total parasite biodiversity.


Asunto(s)
Helmintos , Terminología como Asunto , Animales , Helmintos/clasificación , Especificidad de la Especie , Clasificación
3.
Artículo en Inglés | MEDLINE | ID: mdl-38984760

RESUMEN

The Anthropocene is seeing the human footprint rapidly spreading to all of Earth's ecosystems. The fast-changing biotic and abiotic conditions experienced by all organisms are exerting new and strong selective pressures, and there is a growing list of examples of human-induced evolution in response to anthropogenic impacts. No organism is exempt from these novel selective pressures. Here, we synthesise current knowledge on human-induced evolution in eukaryotic parasites of animals, and present a multidisciplinary framework for its study and monitoring. Parasites generally have short generation times and huge fecundity, features that predispose them for rapid evolution. We begin by reviewing evidence that parasites often have substantial standing genetic variation, and examples of their rapid evolution both under conditions of livestock production and in serial passage experiments. We then present a two-step conceptual overview of the causal chain linking anthropogenic impacts to parasite evolution. First, we review the major anthropogenic factors impacting parasites, and identify the selective pressures they exert on parasites through increased mortality of either infective stages or adult parasites, or through changes in host density, quality or immunity. Second, we discuss what new phenotypic traits are likely to be favoured by the new selective pressures resulting from altered parasite mortality or host changes; we focus mostly on parasite virulence and basic life-history traits, as these most directly influence the transmission success of parasites and the pathology they induce. To illustrate the kinds of evolutionary changes in parasites anticipated in the Anthropocene, we present a few scenarios, either already documented or hypothetical but plausible, involving parasite taxa in livestock, aquaculture and natural systems. Finally, we offer several approaches for investigations and real-time monitoring of rapid, human-induced evolution in parasites, ranging from controlled experiments to the use of state-of-the-art genomic tools. The implications of fast-evolving parasites in the Anthropocene for disease emergence and the dynamics of infections in domestic animals and wildlife are concerning. Broader recognition that it is not only the conditions for parasite transmission that are changing, but the parasites themselves, is needed to meet better the challenges ahead.

4.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301266

RESUMEN

Genetic studies of nematodes have been dominated by Caenorhabditis elegans as a model species. A lack of genomic resources has limited the expansion of genetic research to other groups of nematodes. Here, we report a draft genome assembly of a mermithid nematode, Mermis nigrescens. Mermithidae are insect parasitic nematodes with hosts including a wide range of terrestrial arthropods. We sequenced, assembled, and annotated the whole genome of M. nigrescens using nanopore long reads and 10X Chromium link reads. The assembly is 524 Mb in size consisting of 867 scaffolds. The N50 value is 2.42 Mb, and half of the assembly is in the 30 longest scaffolds. The assembly BUSCO score from the eukaryotic database (eukaryota_odb10) indicates that the genome is 86.7% complete and 5.1% partial. The genome has a high level of heterozygosity (6.6%) with a repeat content of 83.98%. mRNA-seq reads from different sized nematodes (≤2 cm, 3.5-7 cm, and >7 cm body length) representing different developmental stages were also generated and used for the genome annotation. Using ab initio and evidence-based gene model predictions, 12,313 protein-coding genes and 24,186 mRNAs were annotated. These genomic resources will help researchers investigate the various aspects of the biology and host-parasite interactions of mermithid nematodes.


Asunto(s)
Mermithoidea , Nematodos , Animales , Mermithoidea/genética , Nematodos/genética , Genómica , Caenorhabditis elegans/genética , Genoma , Anotación de Secuencia Molecular
5.
Princeton; Princeton University; 2nd ed; 2007. 332 p.
Monografía en Inglés | LILACS, ColecionaSUS | ID: biblio-941233
6.
Princeton; Princeton University; 2nd ed; 2007. 332 p.
Monografía en Inglés | LILACS | ID: lil-760853
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA