Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Entropy (Basel) ; 23(3)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805786

RESUMEN

In recent decades, image encryption, as one of the significant information security fields, has attracted many researchers and scientists. However, several studies have been performed with different methods, and novel and useful algorithms have been suggested to improve secure image encryption schemes. Nowadays, chaotic methods have been found in diverse fields, such as the design of cryptosystems and image encryption. Chaotic methods-based digital image encryptions are a novel image encryption method. This technique uses random chaos sequences for encrypting images, and it is a highly-secured and fast method for image encryption. Limited accuracy is one of the disadvantages of this technique. This paper researches the chaos sequence and wavelet transform value to find gaps. Thus, a novel technique was proposed for digital image encryption and improved previous algorithms. The technique is run in MATLAB, and a comparison is made in terms of various performance metrics such as the Number of Pixels Change Rate (NPCR), Peak Signal to Noise Ratio (PSNR), Correlation coefficient, and Unified Average Changing Intensity (UACI). The simulation and theoretical analysis indicate the proposed scheme's effectiveness and show that this technique is a suitable choice for actual image encryption.

2.
Comput Intell Neurosci ; 2022: 7543429, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571692

RESUMEN

The detection of brain tumors using magnetic resonance imaging is currently one of the biggest challenges in artificial intelligence and medical engineering. It is important to identify these brain tumors as early as possible, as they can grow to death. Brain tumors can be classified as benign or malignant. Creating an intelligent medical diagnosis system for the diagnosis of brain tumors from MRI imaging is an integral part of medical engineering as it helps doctors detect brain tumors early and oversee treatment throughout recovery. In this study, a comprehensive approach to diagnosing benign and malignant brain tumors is proposed. The proposed method consists of four parts: image enhancement to reduce noise and unify image size, contrast, and brightness, image segmentation based on morphological operators, feature extraction operations including size reduction and selection of features based on the fractal model, and eventually, feature improvement according to segmentation and selection of optimal class with a fuzzy deep convolutional neural network. The BraTS data set is used as magnetic resonance imaging data in experimental results. A series of evaluation criteria is also compared with previous methods, where the accuracy of the proposed method is 98.68%, which has significant results.


Asunto(s)
Neoplasias Encefálicas , Procesamiento de Imagen Asistido por Computador , Algoritmos , Inteligencia Artificial , Neoplasias Encefálicas/diagnóstico por imagen , Fractales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación
3.
Artículo en Inglés | MEDLINE | ID: mdl-34206486

RESUMEN

At present, there is an increase in the capacity of data generated and stored in the medical area. Thus, for the efficient handling of these extensive data, the compression methods need to be re-explored by considering the algorithm's complexity. To reduce the redundancy of the contents of the image, thus increasing the ability to store or transfer information in optimal form, an image processing approach needs to be considered. So, in this study, two compression techniques, namely lossless compression and lossy compression, were applied for image compression, which preserves the image quality. Moreover, some enhancing techniques to increase the quality of a compressed image were employed. These methods were investigated, and several comparison results are demonstrated. Finally, the performance metrics were extracted and analyzed based on state-of-the-art methods. PSNR, MSE, and SSIM are three performance metrics that were used for the sample medical images. Detailed analysis of the measurement metrics demonstrates better efficiency than the other image processing techniques. This study helps to better understand these strategies and assists researchers in selecting a more appropriate technique for a given use case.


Asunto(s)
Compresión de Datos , Algoritmos , Procesamiento de Imagen Asistido por Computador , Rayos X
4.
Diagnostics (Basel) ; 11(10)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34679568

RESUMEN

Breast cancer is one of the main causes of death among women worldwide. Early detection of this disease helps reduce the number of premature deaths. This research aims to design a method for identifying and diagnosing breast tumors based on ultrasound images. For this purpose, six techniques have been performed to detect and segment ultrasound images. Features of images are extracted using the fractal method. Moreover, k-nearest neighbor, support vector machine, decision tree, and Naïve Bayes classification techniques are used to classify images. Then, the convolutional neural network (CNN) architecture is designed to classify breast cancer based on ultrasound images directly. The presented model obtains the accuracy of the training set to 99.8%. Regarding the test results, this diagnosis validation is associated with 88.5% sensitivity. Based on the findings of this study, it can be concluded that the proposed high-potential CNN algorithm can be used to diagnose breast cancer from ultrasound images. The second presented CNN model can identify the original location of the tumor. The results show 92% of the images in the high-performance region with an AUC above 0.6. The proposed model can identify the tumor's location and volume by morphological operations as a post-processing algorithm. These findings can also be used to monitor patients and prevent the growth of the infected area.

5.
Comput Intell Neurosci ; 2021: 7714351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354746

RESUMEN

Diabetic retinopathy is characteristic of a local distribution that involves early-stage risk factors and can forecast the evolution of the illness or morphological lesions related to the abnormality of retinal blood flows. Regional variations in retinal blood flow and modulation of retinal capillary width in the macular area and the retinal environment are also linked to the course of diabetic retinopathy. Despite the fact that diabetic retinopathy is frequent nowadays, it is hard to avoid. An ophthalmologist generally determines the seriousness of the retinopathy of the eye by directly examining color photos and evaluating them by visually inspecting the fundus. It is an expensive process because of the vast number of diabetic patients around the globe. We used the IDRiD data set that contains both typical diabetic retinopathic lesions and normal retinal structures. We provided a CNN architecture for the detection of the target region of 80 patients' fundus imagery. Results demonstrate that the approach described here can nearly detect 83.84% of target locations. This result can potentially be utilized to monitor and regulate patients.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Fondo de Ojo , Humanos , Redes Neurales de la Computación , Retina
6.
Comput Intell Neurosci ; 2021: 5863496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239550

RESUMEN

Mammography is a significant screening test for early detection of breast cancer, which increases the patient's chances of complete recovery. In this paper, a clustering method is presented for the detection of breast cancer tumor locations and areas. To implement the clustering method, we used the growth region approach. This method detects similar pixels nearby. To find the best initial point for detection, it is essential to remove human interaction in clustering. Therefore, in this paper, the FCM-GA algorithm is used to find the best point for starting growth. Their results are compared with the manual selection method and Gaussian Mixture Model method for verification. The classification is performed to diagnose breast cancer type in two primary datasets of MIAS and BI-RADS using features of GLCM and probabilistic neural network (PNN). Results of clustering show that the presented FCM-GA method outperforms other methods. Moreover, the accuracy of the clustering method for FCM-GA is 94%, as the best approach used in this paper. Furthermore, the result shows that the PNN methods have high accuracy and sensitivity with the MIAS dataset.


Asunto(s)
Neoplasias de la Mama , Algoritmos , Neoplasias de la Mama/diagnóstico , Análisis por Conglomerados , Femenino , Humanos , Mamografía , Redes Neurales de la Computación
7.
Comput Methods Biomech Biomed Engin ; 24(16): 1828-1840, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34121524

RESUMEN

Fatigue is an essential criterion for physiotherapy in injured athletes. Muscle fatigue mechanism also is a crucial matter in designing a workout program. It is mainly related to physical injury, cerebrovascular accident, spinal cord injury, and rheumatologic disease. The leg is one of the organs in the body where fatigue is visible, and usually, the first fatigue traces in the human body are shown. The main objective of the article is to diagnosis tired and untired feet base on digital footprint images. Therefore, the foot images of students in the age group of 20-30 were examined. The device is a digital footprint scanner. This device includes a plate screen equipped with pressure sensors and footprints in the image. A treadmill is used for 8 min to tire our test individuals. Therefore, six methods of k-nearest-neighbor classifier, multilayer perceptron, support vector machine, naïve Bayesian learning, decision tree, and convolutional neural network (CNN) architecture are presented to achieve the goal. First, the images are grayscale and divide into four regions, and the mean and variance of pressure in each of the four areas are extracted as features. Finally, the classification is accomplished using machine learning methods. Then, the results are compared with a proposed CNN architecture. The presented CNN method is outperforming other approaches and can be used for future fatigue diagnosis systems.


Asunto(s)
Redes Neurales de la Computación , Máquina de Vectores de Soporte , Adulto , Teorema de Bayes , Humanos , Aprendizaje Automático , Adulto Joven
8.
Biomed Res Int ; 2021: 5597222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34258269

RESUMEN

The present study is developed a new approach using a computer diagnostic method to diagnosing diabetic diseases with the use of fluorescein images. In doing so, this study presented the growth region algorithm for the aim of diagnosing diabetes, considering the angiography images of the patients' eyes. In addition, this study integrated two methods, including fuzzy C-means (FCM) and genetic algorithm (GA) to predict the retinopathy in diabetic patients from angiography images. The developed algorithm was applied to a total of 224 images of patients' retinopathy eyes. As clearly confirmed by the obtained results, the GA-FCM method outperformed the hand method regarding the selection of initial points. The proposed method showed 0.78 sensitivity. The comparison of the fuzzy fitness function in GA with other techniques revealed that the approach introduced in this study is more applicable to the Jaccard index since it could offer the lowest Jaccard distance and, at the same time, the highest Jaccard values. The results of the analysis demonstrated that the proposed method was efficient and effective to predict the retinopathy in diabetic patients from angiography images.


Asunto(s)
Algoritmos , Retinopatía Diabética/diagnóstico , Lógica Difusa , Angiografía , Humanos , Procesamiento de Imagen Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA