Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Genet ; 24(8): 573-584, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37258725

RESUMEN

The use of genomics is firmly established in clinical practice, resulting in innovations across a wide range of disciplines such as genetic screening, rare disease diagnosis and molecularly guided therapy choice. This new field of genomic medicine has led to improvements in patient outcomes. However, most clinical applications of genomics rely on information generated from bulk approaches, which do not directly capture the genomic variation that underlies cellular heterogeneity. With the advent of single-cell technologies, research is rapidly uncovering how genomic data at cellular resolution can be used to understand disease pathology and mechanisms. Both DNA-based and RNA-based single-cell technologies have the potential to improve existing clinical applications and open new application spaces for genomics in clinical practice, with oncology, immunology and haematology poised for initial adoption. However, challenges in translating cellular genomics from research to a clinical setting must first be overcome.


Asunto(s)
Pruebas Genéticas , Genómica , Humanos , Genómica/métodos , Medicina de Precisión/métodos
2.
Nat Rev Genet ; 24(8): 535-549, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37085594

RESUMEN

Single-cell genomic technologies are revealing the cellular composition, identities and states in tissues at unprecedented resolution. They have now scaled to the point that it is possible to query samples at the population level, across thousands of individuals. Combining single-cell information with genotype data at this scale provides opportunities to link genetic variation to the cellular processes underpinning key aspects of human biology and disease. This strategy has potential implications for disease diagnosis, risk prediction and development of therapeutic solutions. But, effectively integrating large-scale single-cell genomic data, genetic variation and additional phenotypic data will require advances in data generation and analysis methods. As single-cell genetics begins to emerge as a field in its own right, we review its current state and the challenges and opportunities ahead.


Asunto(s)
Genoma , Genómica , Humanos , Genómica/métodos , Genotipo , Genética Humana
3.
Hum Mol Genet ; 33(9): 739-751, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38272457

RESUMEN

INTRODUCTION: Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. METHODS: 62 genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups, underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled with CellProfiler image analysis allowed for single-cell morphological profiling. RESULTS: Many gene knockouts invoked DEGs relating to matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology. TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and PLEKHA7 increased granularity and intensity of actin and the cell-membrane. CONCLUSION: High-throughput analysis of cellular structure and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong genetic basis.


Asunto(s)
Glaucoma de Ángulo Abierto , Presión Intraocular , Humanos , Presión Intraocular/genética , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/genética , Predisposición Genética a la Enfermedad , Tonometría Ocular , Proteína 2 Similar a la Angiopoyetina
4.
Genome Res ; 31(10): 1913-1926, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34548323

RESUMEN

The tumor immune microenvironment is a main contributor to cancer progression and a promising therapeutic target for oncology. However, immune microenvironments vary profoundly between patients, and biomarkers for prognosis and treatment response lack precision. A comprehensive compendium of tumor immune cells is required to pinpoint predictive cellular states and their spatial localization. We generated a single-cell tumor immune atlas, jointly analyzing published data sets of >500,000 cells from 217 patients and 13 cancer types, providing the basis for a patient stratification based on immune cell compositions. Projecting immune cells from external tumors onto the atlas facilitated an automated cell annotation system. To enable in situ mapping of immune populations for digital pathology, we applied SPOTlight, combining single-cell and spatial transcriptomics data and identifying colocalization patterns of immune, stromal, and cancer cells in tumor sections. We expect the tumor immune cell atlas, together with our versatile toolbox for precision oncology, to advance currently applied stratification approaches for prognosis and immunotherapy.


Asunto(s)
Neoplasias , Biomarcadores de Tumor/genética , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión , Pronóstico , Microambiente Tumoral
6.
PLoS Genet ; 17(5): e1009497, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33979322

RESUMEN

Optical Coherence Tomography (OCT) enables non-invasive imaging of the retina and is used to diagnose and manage ophthalmic diseases including glaucoma. We present the first large-scale genome-wide association study of inner retinal morphology using phenotypes derived from OCT images of 31,434 UK Biobank participants. We identify 46 loci associated with thickness of the retinal nerve fibre layer or ganglion cell inner plexiform layer. Only one of these loci has been associated with glaucoma, and despite its clear role as a biomarker for the disease, Mendelian randomisation does not support inner retinal thickness being on the same genetic causal pathway as glaucoma. We extracted overall retinal thickness at the fovea, representative of foveal hypoplasia, with which three of the 46 SNPs were associated. We additionally associate these three loci with visual acuity. In contrast to the Mendelian causes of severe foveal hypoplasia, our results suggest a spectrum of foveal hypoplasia, in part genetically determined, with consequences on visual function.


Asunto(s)
Bancos de Muestras Biológicas , Variación Genética , Fenotipo , Retina/metabolismo , Tomografía de Coherencia Óptica , Femenino , Genotipo , Glaucoma/genética , Glaucoma/patología , Color del Cabello/genética , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Control de Calidad , Retina/patología , Reino Unido , Trastornos de la Visión , Agudeza Visual/genética
7.
Clin Immunol ; 246: 109209, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539107

RESUMEN

Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naïve T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. A novel population of naïve interferon-activated T cells is expanded in acute COVID-19 and is recruited into the memory compartment during convalescence in adults but not children. This was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.


Asunto(s)
COVID-19 , Humanos , Adulto , SARS-CoV-2 , Linfocitos T CD4-Positivos , Inmunidad Celular , Activación de Linfocitos , Anticuerpos Antivirales
8.
EMBO J ; 38(18): e100811, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31436334

RESUMEN

The retina is a specialized neural tissue that senses light and initiates image processing. Although the functional organization of specific retina cells has been well studied, the molecular profile of many cell types remains unclear in humans. To comprehensively profile the human retina, we performed single-cell RNA sequencing on 20,009 cells from three donors and compiled a reference transcriptome atlas. Using unsupervised clustering analysis, we identified 18 transcriptionally distinct cell populations representing all known neural retinal cells: rod photoreceptors, cone photoreceptors, Müller glia, bipolar cells, amacrine cells, retinal ganglion cells, horizontal cells, astrocytes, and microglia. Our data captured molecular profiles for healthy and putative early degenerating rod photoreceptors, and revealed the loss of MALAT1 expression with longer post-mortem time, which potentially suggested a novel role of MALAT1 in rod photoreceptor degeneration. We have demonstrated the use of this retina transcriptome atlas to benchmark pluripotent stem cell-derived cone photoreceptors and an adult Müller glia cell line. This work provides an important reference with unprecedented insights into the transcriptional landscape of human retinal cells, which is fundamental to understanding retinal biology and disease.


Asunto(s)
Degeneración Nerviosa/genética , ARN Largo no Codificante/genética , Retina/química , Análisis de la Célula Individual/métodos , Transcriptoma , Autopsia , Análisis por Conglomerados , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Humanos , Especificidad de Órganos , Células Fotorreceptoras Retinianas Bastones/química , Análisis de Secuencia de ARN , Aprendizaje Automático no Supervisado
9.
Bioinformatics ; 37(16): 2485-2487, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33459785

RESUMEN

SUMMARY: Data sparsity in single-cell experiments prevents an accurate assessment of gene expression when visualized in a low-dimensional space. Here, we introduce Nebulosa, an R package that uses weighted kernel density estimation to recover signals lost through drop-out or low expression. AVAILABILITY AND IMPLEMENTATION: Nebulosa can be easily installed from www.github.com/powellgenomicslab/Nebulosa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

12.
Genome Res ; 28(7): 1053-1066, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29752298

RESUMEN

Heterogeneity of cell states represented in pluripotent cultures has not been described at the transcriptional level. Since gene expression is highly heterogeneous between cells, single-cell RNA sequencing can be used to identify how individual pluripotent cells function. Here, we present results from the analysis of single-cell RNA sequencing data from 18,787 individual WTC-CRISPRi human induced pluripotent stem cells. We developed an unsupervised clustering method and, through this, identified four subpopulations distinguishable on the basis of their pluripotent state, including a core pluripotent population (48.3%), proliferative (47.8%), early primed for differentiation (2.8%), and late primed for differentiation (1.1%). For each subpopulation, we were able to identify the genes and pathways that define differences in pluripotent cell states. Our method identified four transcriptionally distinct predictor gene sets composed of 165 unique genes that denote the specific pluripotency states; using these sets, we developed a multigenic machine learning prediction method to accurately classify single cells into each of the subpopulations. Compared against a set of established pluripotency markers, our method increases prediction accuracy by 10%, specificity by 20%, and explains a substantially larger proportion of deviance (up to threefold) from the prediction model. Finally, we developed an innovative method to predict cells transitioning between subpopulations and support our conclusions with results from two orthogonal pseudotime trajectory methods.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , ARN/genética , Diferenciación Celular/genética , Línea Celular , Análisis por Conglomerados , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Expresión Génica/genética , Heterogeneidad Genética , Marcadores Genéticos/genética , Humanos , Análisis de Secuencia de ARN/métodos , Transcripción Genética/genética
13.
Am J Hum Genet ; 100(2): 228-237, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28065468

RESUMEN

We analyzed the mRNA levels for 36,778 transcript expression traits (probes) from 2,765 individuals to comprehensively investigate the genetic architecture and degree of missing heritability for gene expression in peripheral blood. We identified 11,204 cis and 3,791 trans independent expression quantitative trait loci (eQTL) by using linear mixed models to perform genome-wide association analyses. Furthermore, using information on both closely and distantly related individuals, heritability was estimated for all expression traits. Of the set of expressed probes (15,966), 10,580 (66%) had an estimated narrow-sense heritability (h2) greater than zero with a mean (median) value of 0.192 (0.142). Across these probes, on average the proportion of genetic variance explained by all eQTL (hCOJO2) was 31% (0.060/0.192), meaning that 69% is missing, with the sentinel SNP of the largest eQTL explaining 87% (0.052/0.060) of the variance attributed to all identified cis- and trans-eQTL. For the same set of probes, the genetic variance attributed to genome-wide common (MAF > 0.01) HapMap 3 SNPs (hg2) accounted for on average 48% (0.093/0.192) of h2. Taken together, the evidence suggests that approximately half the genetic variance for gene expression is not tagged by common SNPs, and of the variance that is tagged by common SNPs, a large proportion can be attributed to identifiable eQTL of large effect, typically in cis. Finally, we present evidence that, compared with a meta-analysis, using individual-level data results in an increase of approximately 50% in power to detect eQTL.


Asunto(s)
Expresión Génica , Patrón de Herencia , Sitios de Carácter Cuantitativo , ARN Mensajero/sangre , Estudios de Asociación Genética , Genoma Humano , Genotipo , Proyecto Mapa de Haplotipos , Humanos , Modelos Lineales , Desequilibrio de Ligamiento , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética
14.
Nature ; 508(7495): 249-53, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24572353

RESUMEN

Epistasis is the phenomenon whereby one polymorphism's effect on a trait depends on other polymorphisms present in the genome. The extent to which epistasis influences complex traits and contributes to their variation is a fundamental question in evolution and human genetics. Although often demonstrated in artificial gene manipulation studies in model organisms, and some examples have been reported in other species, few examples exist for epistasis among natural polymorphisms in human traits. Its absence from empirical findings may simply be due to low incidence in the genetic control of complex traits, but an alternative view is that it has previously been too technically challenging to detect owing to statistical and computational issues. Here we show, using advanced computation and a gene expression study design, that many instances of epistasis are found between common single nucleotide polymorphisms (SNPs). In a cohort of 846 individuals with 7,339 gene expression levels measured in peripheral blood, we found 501 significant pairwise interactions between common SNPs influencing the expression of 238 genes (P < 2.91 × 10(-16)). Replication of these interactions in two independent data sets showed both concordance of direction of epistatic effects (P = 5.56 × 10(-31)) and enrichment of interaction P values, with 30 being significant at a conservative threshold of P < 9.98 × 10(-5). Forty-four of the genetic interactions are located within 5 megabases of regions of known physical chromosome interactions (P = 1.8 × 10(-10)). Epistatic networks of three SNPs or more influence the expression levels of 129 genes, whereby one cis-acting SNP is modulated by several trans-acting SNPs. For example, MBNL1 is influenced by an additive effect at rs13069559, which itself is masked by trans-SNPs on 14 different chromosomes, with nearly identical genotype-phenotype maps for each cis-trans interaction. This study presents the first evidence, to our knowledge, for many instances of segregating common polymorphisms interacting to influence human traits.


Asunto(s)
Epistasis Genética/genética , Regulación de la Expresión Génica/genética , Transcripción Genética/genética , Estudios de Cohortes , Europa (Continente)/etnología , Femenino , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Humanos , Desequilibrio de Ligamiento , Masculino , Linaje , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados
15.
Respirology ; 24(1): 29-36, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30264869

RESUMEN

The past four decades have yielded advances in molecular biology allowing detailed characterization of the cellular genome and the transcriptome: the complete set of RNA species transcribed by a cell or tissue. Through transcriptomics and next-generation sequencing, we can now attain an unprecedented level of detail in understanding cellular phenotypes through examining the genes expressed in specific physiological and pathological states. In this review, we provide an overview of transcriptomics and RNA-sequencing in the analysis of whole tissue and single cells. We describe the techniques and pitfalls involved in the isolation and sequencing of single cells, and what additional benefits this application can provide. Finally, we look to how these technologies are being applied in pulmonary research, and how they may translate in the near future into clinical practice.


Asunto(s)
Investigación Biomédica , Enfermedades Pulmonares , Transcriptoma/fisiología , Investigación Biomédica Traslacional , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Tecnología Biomédica , Humanos , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/terapia , Análisis de Secuencia
16.
Hum Mol Genet ; 25(24): 5332-5338, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798101

RESUMEN

The mitochondrial and nuclear genomes coordinate and co-evolve in eukaryotes in order to adapt to environmental changes. Variation in the mitochondrial genome is capable of affecting expression of genes on the nuclear genome. Sex-specific mitochondrial genetic control of gene expression has been demonstrated in Drosophila melanogaster, where males were found to drive most of the total variation in gene expression. This has potential implications for male-related health and disease resulting from variation in mtDNA solely inherited from the mother. We used a family-based study comprised of 47,323 gene expression probes and 78 mitochondrial SNPs (mtSNPs) from n = 846 individuals to examine the extent of mitochondrial genetic control of gene expression in humans. This identified 15 significant probe-mtSNP associations (P<10-8) corresponding to 5 unique genes on the mitochondrial and nuclear genomes, with three of these genes corresponding to mitochondrial genetic control of gene expression in the nuclear genome. The associated mtSNPs for three genes (one cis and two trans associations) were replicated (P < 0.05) in an independent dataset of n = 452 unrelated individuals. There was no evidence for sexual dimorphic gene expression in any of these five probes. Sex-specific effects were examined by applying our analysis to males and females separately and testing for differences in effect size. The MEST gene was identified as having the most significantly different effect sizes across the sexes (P≈10-7). MEST was similarly expressed in males and females with the G allele; however, males with the C allele are highly expressed for MEST, while females show no expression of the gene. This study provides evidence for the mitochondrial genetic control of expression of several genes in humans, with little evidence found for sex-specific effects.


Asunto(s)
ADN Mitocondrial/genética , Regulación de la Expresión Génica/genética , Mitocondrias/genética , Biosíntesis de Proteínas/genética , Alelos , Animales , Núcleo Celular/genética , Cromosomas/genética , Drosophila melanogaster/genética , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Caracteres Sexuales
17.
Hum Mol Genet ; 25(22): 5046-5058, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28171565

RESUMEN

Genome-wide association studies (GWAS) have identified markers within the WNT4 region on chromosome 1p36.12 showing consistent and strong association with increasing endometriosis risk. Fine mapping using sequence and imputed genotype data has revealed strong candidates for the causal SNPs within these critical regions; however, the molecular pathogenesis of these SNPs is currently unknown. We used gene expression data collected from whole blood from 862 individuals and endometrial tissue from 136 individuals from independent populations of European descent to examine the mechanism underlying endometriosis susceptibility. Association mapping results from 7,090 individuals (2,594 cases and 4,496 controls) supported rs3820282 as the SNP with the strongest association for endometriosis risk (P = 1.84 × 10−5, OR = 1.244 (1.126-1.375)). SNP rs3820282 is a significant eQTL in whole blood decreasing expression of LINC00339 (also known as HSPC157) and increasing expression of CDC42 (P = 2.0 ×10−54 and 4.5x10−4 respectively). The largest effects were for two LINC00339 probes (P = 2.0 ×10−54; 1.0 × 10−34). The eQTL for LINC00339 was also observed in endometrial tissue (P = 2.4 ×10−8) with the same direction of effect for both whole blood and endometrial tissue. There was no evidence for eQTL effects for WNT4. Chromatin conformation capture provides evidence for risk SNPs interacting with the promoters of both LINC00339 and CDC4 and luciferase reporter assays suggest the risk SNP rs12038474 is located in a transcriptional silencer for CDC42 and the risk allele increases expression of CDC42. However, no effect of rs3820282 was observed in the LINC00339 expression in Ishikawa cells. Taken together, our results suggest that SNPs increasing endometriosis risk in this region act through CDC42, but further functional studies are required to rule out inverse regulation of both LINC00339 and CDC42.


Asunto(s)
Endometriosis/genética , ARN Largo no Codificante/genética , Proteína de Unión al GTP cdc42/genética , Estudios de Casos y Controles , Cromosomas Humanos Par 1 , Endometriosis/sangre , Femenino , Expresión Génica , Regulación de la Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , ARN Largo no Codificante/metabolismo , Factores de Riesgo , Población Blanca/genética , Proteína Wnt4/genética , Proteína Wnt4/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
18.
Cephalalgia ; 38(2): 292-303, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28058943

RESUMEN

Background Typical migraine is a frequent, debilitating and painful headache disorder with an estimated heritability of about 50%. Although genome-wide association (GWA) studies have identified over 40 single nucleotide polymorphisms associated with migraine, further research is required to determine their biological role in migraine susceptibility. Therefore, we performed a study of genome-wide gene expression in a large sample of 83 migraine cases and 83 non-migraine controls to determine whether altered expression levels of genes and pathways could provide insights into the biological mechanisms underlying migraine. Methods We assessed whole blood gene expression data for 17994 expression probes measured using IlluminaHT-12 v4.0 BeadChips. Differential expression was assessed using multivariable logistic regression. Gene expression probes with a nominal p value < 0.05 were classified as differentially expressed. We identified modules of co-regulated genes and tested them for enrichment of differentially expressed genes and functional pathways using a false discovery rate <0.05. Results Association analyses between migraine and probe expression levels, adjusted for age and gender, revealed an excess of small p values, but there was no significant single-probe association after correction for multiple testing. Network analysis of pooled expression data identified 10 modules of co-expressed genes. One module harboured a significant number of differentially expressed genes and was strongly enriched with immune-inflammatory pathways, including multiple pathways expressed in microglial cells. Conclusions These data suggest immune-inflammatory pathways play an important role in the pathogenesis, manifestation, and/or progression of migraine in some patients. Furthermore, gene-expression associations are measurable in whole blood, suggesting the analysis of blood gene expression can inform our understanding of the biological mechanisms underlying migraine, identify biomarkers, and facilitate the discovery of novel pathways and thus determine new targets for drug therapy.


Asunto(s)
Estudio de Asociación del Genoma Completo , Inflamación/genética , Trastornos Migrañosos/genética , Trastornos Migrañosos/fisiopatología , Adolescente , Adulto , Anciano , Niño , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , Inflamación/fisiopatología , Masculino , Persona de Mediana Edad , Transcriptoma
19.
Nature ; 490(7419): 267-72, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-22982992

RESUMEN

There is evidence across several species for genetic control of phenotypic variation of complex traits, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using ∼170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of ∼0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI, possibly mediated by DNA methylation. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.


Asunto(s)
Índice de Masa Corporal , Variación Genética , Fenotipo , Proteínas/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Estatura/genética , Proteínas Co-Represoras , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA