Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 560(7720): 666-670, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30135577

RESUMEN

Frizzled receptors (FZDs) are class-F G-protein-coupled receptors (GPCRs) that function in Wnt signalling and are essential for developing and adult organisms1,2. As central mediators in this complex signalling pathway, FZDs serve as gatekeeping proteins both for drug intervention and for the development of probes in basic and in therapeutic research. Here we present an atomic-resolution structure of the human Frizzled 4 receptor (FZD4) transmembrane domain in the absence of a bound ligand. The structure reveals an unusual transmembrane architecture in which helix VI is short and tightly packed, and is distinct from all other GPCR structures reported so far. Within this unique transmembrane fold is an extremely narrow and highly hydrophilic pocket that is not amenable to the binding of traditional GPCR ligands. We show that such a pocket is conserved across all FZDs, which may explain the long-standing difficulties in the development of ligands for these receptors. Molecular dynamics simulations on the microsecond timescale and mutational analysis uncovered two coupled, dynamic kinks located at helix VII that are involved in FZD4 activation. The stability of the structure in its ligand-free form, an unfavourable pocket for ligand binding and the two unusual kinks on helix VII suggest that FZDs may have evolved a novel ligand-recognition and activation mechanism that is distinct from that of other GPCRs.


Asunto(s)
Receptores Frizzled/química , Sitios de Unión , Cristalografía por Rayos X , Cisteína/metabolismo , Proteínas Dishevelled/metabolismo , Receptores Frizzled/genética , Humanos , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Dominios Proteicos , Vía de Señalización Wnt
2.
Cereb Cortex ; 33(10): 6320-6334, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36573438

RESUMEN

Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.


Asunto(s)
Atención , Trastorno del Espectro Autista , Encéfalo , Conectoma , Humanos , Adolescente , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Conjuntos de Datos como Asunto , Masculino , Femenino , Encéfalo/fisiopatología , Encéfalo/ultraestructura
3.
Biochem J ; 478(23): 4137-4149, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34796899

RESUMEN

Ornithine decarboxylase (ODC) is the rate-limiting enzyme for the synthesis of polyamines (PAs). PAs are oncometabolites that are required for proliferation, and pharmaceutical ODC inhibition is pursued for the treatment of hyperproliferative diseases, including cancer and infectious diseases. The most potent ODC inhibitor is 1-amino-oxy-3-aminopropane (APA). A previous crystal structure of an ODC-APA complex indicated that APA non-covalently binds ODC and its cofactor pyridoxal 5-phosphate (PLP) and functions by competing with the ODC substrate ornithine for binding to the catalytic site. We have revisited the mechanism of APA binding and ODC inhibition through a new crystal structure of APA-bound ODC, which we solved at 2.49 Šresolution. The structure unambiguously shows the presence of a covalent oxime between APA and PLP in the catalytic site, which we confirmed in solution by mass spectrometry. The stable oxime makes extensive interactions with ODC but cannot be catabolized, explaining APA's high potency in ODC inhibition. In addition, we solved an ODC/PLP complex structure with citrate bound at the substrate-binding pocket. These two structures provide new structural scaffolds for developing more efficient pharmaceutical ODC inhibitors.


Asunto(s)
Inhibidores de la Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/metabolismo , Propilaminas/metabolismo , Humanos , Unión Proteica , Dominios Proteicos
4.
Nature ; 523(7562): 561-7, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26200343

RESUMEN

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Asunto(s)
Arrestina/química , Arrestina/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Disulfuros/química , Disulfuros/metabolismo , Humanos , Rayos Láser , Ratones , Modelos Moleculares , Complejos Multiproteicos/biosíntesis , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Reproducibilidad de los Resultados , Transducción de Señal , Rayos X
5.
J Int Neuropsychol Soc ; 26(7): 725-732, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32178755

RESUMEN

OBJECTIVE: Executive functions (EF) drive health and educational outcomes and therefore are increasingly common treatment targets. Most treatment trials rely on questionnaires to capture meaningful change because ecologically valid, pediatric performance-based EF tasks are lacking. The Executive Function Challenge Task (EFCT) is a standardized, treatment-sensitive, objective measure which assesses flexibility and planning in the context of provocative social interactions, making it a "hot" EF task. METHOD: We investigate the structure, reliability, and validity of the EFCT in youth with autism (Autism Spectrum Disorder; n = 129), or attention deficit hyperactivity disorder with flexibility problems (n = 93), and typically developing (TD; n = 52) youth. RESULTS: The EFCT can be coded reliably, has a two-factor structure (flexibility and planning), and adequate internal consistency and consistency across forms. Unlike a traditional performance-based EF task (verbal fluency), it shows significant correlations with parent-reported EF, indicating ecological validity. EFCT performance distinguishes youth with known EF problems from TD youth and is not significantly related to visual pattern recognition, or social communication/understanding in autistic children. CONCLUSIONS: The EFCT demonstrates adequate reliability and validity and may provide developmentally appropriate, treatment-sensitive, and ecologically valid assessment of "hot" EF in youth. It can be administered in controlled settings by masked administrators.


Asunto(s)
Función Ejecutiva , Psicometría/normas , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/psicología , Trastorno del Espectro Autista/psicología , Niño , Femenino , Humanos , Masculino , Memoria a Corto Plazo , Pruebas Neuropsicológicas , Reproducibilidad de los Resultados , Interacción Social
6.
J Biol Chem ; 293(44): 16994-17007, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30206123

RESUMEN

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis and a promising drug target for managing metabolic diseases such as type 2 diabetes. Many pharmacological AMPK activators, and possibly unidentified physiological metabolites, bind to the allosteric drug and metabolite (ADaM) site at the interface between the kinase domain (KD) in the α-subunit and the carbohydrate-binding module (CBM) in the ß-subunit. Here, using double electron-electron resonance (DEER) spectroscopy, we demonstrate that the CBM-KD interaction is partially dissociated and the interface highly disordered in the absence of pharmacological ADaM site activators as inferred from a low depth of modulation and broad DEER distance distributions. ADaM site ligands such as 991, and to a lesser degree phosphorylation, stabilize the KD-CBM association and strikingly reduce conformational heterogeneity in the ADaM site. Our findings that the ADaM site, formed by the KD-CBM interaction, can be modulated by diverse ligands and by phosphorylation suggest that it may function as a hub for integrating regulatory signals.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Regulación Alostérica , Bencimidazoles/química , Bencimidazoles/metabolismo , Benzoatos/química , Benzoatos/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Ligandos , Conformación Proteica , Dominios Proteicos
7.
Proc Natl Acad Sci U S A ; 111(2): 839-44, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379397

RESUMEN

Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP-EID1 interface are highly conserved. Their mutation diminishes SHP-EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors.


Asunto(s)
Modelos Moleculares , Proteínas Nucleares/química , Conformación Proteica , Receptores Citoplasmáticos y Nucleares/química , Proteínas Represoras/química , Ácidos y Sales Biliares/metabolismo , Sitios de Unión/genética , Proteínas de Ciclo Celular , Línea Celular , Colesterol/metabolismo , Cristalización , Diseño de Fármacos , Homeostasis/genética , Homeostasis/fisiología , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo
8.
Genes Dev ; 23(8): 986-96, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19390091

RESUMEN

Small Heterodimer Partner (SHP) inhibits activities of numerous transcription factors involved in diverse biological pathways. As an important metabolic regulator, SHP plays a key role in maintaining cholesterol and bile acid homeostasis by inhibiting cholesterol conversion to bile acids. While SHP gene induction by increased bile acids is well established, whether SHP activity is also modulated remains unknown. Here, we report surprising findings that SHP is a rapidly degraded protein via the ubiquitin-proteasomal pathway and that bile acids or bile acid-induced intestinal fibroblast growth factor 19 (FGF19) increases stability of hepatic SHP by inhibiting proteasomal degradation in an extracellular signal-regulated kinase (ERK)-dependent manner. SHP was ubiquitinated at Lys122 and Lys123, and mutation of these sites altered its stability and repression activity. Tandem mass spectrometry revealed that upon bile acid treatment, SHP was phosphorylated at Ser26, within an ERK motif in SHP, and mutation of this site dramatically abolished SHP stability. Surprisingly, SHP stability was abnormally elevated in ob/ob mice and diet-induced obese mice. These results demonstrate an important role for regulation of SHP stability in bile acid signaling in normal conditions, and that abnormal stabilization of SHP may be associated with metabolic disorders, including obesity and diabetes.


Asunto(s)
Ácidos y Sales Biliares/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/fisiología , Ubiquitinación , Animales , Línea Celular Tumoral , Ácido Quenodesoxicólico/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Fármacos Gastrointestinales/farmacología , Semivida , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Lisina/metabolismo , Ratones , Mutación , Fosforilación , Estabilidad Proteica/efectos de los fármacos , Ubiquitinación/efectos de los fármacos
9.
Nature ; 462(7273): 602-8, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19898420

RESUMEN

Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved beta-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Modelos Moleculares , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Análisis Mutacional de ADN , Plantas Modificadas Genéticamente , Unión Proteica , Estructura Terciaria de Proteína
10.
Proc Natl Acad Sci U S A ; 109(40): 16137-42, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988100

RESUMEN

MicroRNA-34a (miR-34a) is the most highly elevated hepatic miR in obese mice and is also substantially elevated in patients who have steatosis, but its role in obesity and metabolic dysfunction remains unclear. After a meal, FGF19 is secreted from the ileum; binds to a hepatic membrane receptor complex, FGF19 receptor 4 and coreceptor ß-Klotho (ßKL); and mediates postprandial responses under physiological conditions, but hepatic responses to FGF19 signaling were shown to be impaired in patients with steatosis. Here, we show an unexpected functional link between aberrantly elevated miR-34a and impaired ßKL/FGF19 signaling in obesity. In vitro studies show that miR-34a down-regulates ßKL by binding to the 3' UTR of ßKL mRNA. Adenoviral-mediated overexpression of miR-34a in mice decreased hepatic ßKL levels, impaired FGF19-activated ERK and glycogen synthase kinase signaling, and altered expression of FGF19 metabolic target genes. Consistent with these results, ßKL levels were decreased and hepatic responses to FGF19 were severely impaired in dietary obese mice that have elevated miR-34a. Remarkably, in vivo antisense inhibition of miR-34a in obese mice partially restored ßKL levels and improved FGF19 target gene expression and metabolic outcomes, including decreased liver fat. Further, anti-miR-34a treatment in primary hepatocytes of obese mice restored FGF19-activated ERK and glycogen synthase kinase signaling in a ßKL-dependent manner. These results indicate that aberrantly elevated miR-34a in obesity attenuates hepatic FGF19 signaling by directly targeting ßKL. The miR-34a/ßKL/FGF19 axis may present unique therapeutic targets for FGF19-related human diseases, including metabolic disorders and cancer.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Obesidad/metabolismo , Periodo Posprandial/fisiología , Transducción de Señal/fisiología , Animales , Cartilla de ADN/genética , Humanos , Proteínas Klotho , Luciferasas , Masculino , Ratones , Ratones Endogámicos BALB C , Obesidad/fisiopatología , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
J Biol Chem ; 288(32): 23252-63, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23824184

RESUMEN

Bile acids (BAs) are recently recognized key signaling molecules that control integrative metabolism and energy expenditure. BAs activate multiple signaling pathways, including those of nuclear receptors, primarily farnesoid X receptor (FXR), membrane BA receptors, and FXR-induced FGF19 to regulate the fed-state metabolism. Small heterodimer partner (SHP) has been implicated as a key mediator of these BA signaling pathways by recruitment of chromatin modifying proteins, but the key question of how SHP transduces BA signaling into repressive histone modifications at liver metabolic genes remains unknown. Here we show that protein kinase Cζ (PKCζ) is activated by BA or FGF19 and phosphorylates SHP at Thr-55 and that Thr-55 phosphorylation is critical for the epigenomic coordinator functions of SHP. PKCζ is coimmunopreciptitated with SHP and both are recruited to SHP target genes after bile acid or FGF19 treatment. Activated phosphorylated PKCζ and phosphorylated SHP are predominantly located in the nucleus after FGF19 treatment. Phosphorylation at Thr-55 is required for subsequent methylation at Arg-57, a naturally occurring mutation site in metabolic syndrome patients. Thr-55 phosphorylation increases interaction of SHP with chromatin modifiers and their occupancy at selective BA-responsive genes. This molecular cascade leads to repressive modifications of histones at metabolic target genes, and consequently, decreased BA pools and hepatic triglyceride levels. Remarkably, mutation of Thr-55 attenuates these SHP-mediated epigenomic and metabolic effects. This study identifies PKCζ as a novel key upstream regulator of BA-regulated SHP function, revealing the role of Thr-55 phosphorylation in epigenomic regulation of liver metabolism.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Epigénesis Genética/fisiología , Hígado/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/fisiología , Animales , Ácidos y Sales Biliares/genética , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Células Hep G2 , Humanos , Masculino , Metilación , Ratones , Ratones Endogámicos BALB C , Mutación , Fosforilación/fisiología , Proteína Quinasa C-epsilon/genética , Receptores Citoplasmáticos y Nucleares/genética
12.
Proc Natl Acad Sci U S A ; 108(52): 21259-64, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22160701

RESUMEN

Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Cristalización , Activación Enzimática , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Fosfatasa 2C , Difracción de Rayos X
13.
Pharmacotherapy ; 44(3): 241-248, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38140830

RESUMEN

INTRODUCTION: Falls are the leading cause of injury in older individuals, with intracranial hemorrhage (ICH) being a common complication. Anticoagulants, such as vitamin K antagonist and direct oral anticoagulants, are increasingly utilized, and clinicians may question the necessity of reversal in patients with minor ICH, especially in the setting of increased risk of adverse events. This study aimed to identify a population of patients with minor traumatic ICH at low risk for poor-neurologic status where anticoagulant reversal may not improve outcomes. METHODS: This retrospective cohort study utilized data accessed from 35 trauma centers from 2018 to 2021. Patients included had a preinjury anticoagulant regimen, ICH due to blunt trauma, Glasgow Coma Scale score of 15, an Abbreviated Injury Scale (AIS) head score from 2 to 4, and an AIS of ≤1 for non-head regions within 24 h of hospital arrival. Patients were excluded if they required an emergent neurosurgical procedure or were on a preinjury purinergic-P2 receptor-12 protein (P2Y12) inhibitor. The primary outcome was the rate of in-hospital mortality or hospice. RESULTS: There were 654 patients on preinjury anticoagulation who were included with a minor traumatic ICH without neurologic deficits. Overall, 263 patients were reversed and 391 were not reversed. Twelve (4.6%) patients with in-hospital mortality or hospice were reversed compared with 19 (4.91%) patients who were not reversed (p = 0.861). A composite of hospital complications occurred in 21 (8%) reversed patients and 34 (8.7%) not reversed patients (p = 0.748). The average intensive care unit length of stay was 1.4 ± 3.4 days in the reversed group and 1.1 ± 1.8 days in the not reversed group (p = 0.069). CONCLUSION: This study found no difference in hospital outcomes between patients with minor traumatic ICH on oral anticoagulants who were neurologically intact that were reversed versus those who were not reversed. Further studies should continue to define the subset of traumatic ICH patients who may not require reversal of anticoagulation.


Asunto(s)
Anticoagulantes , Hemorragia Intracraneal Traumática , Humanos , Anciano , Anticoagulantes/efectos adversos , Estudios Retrospectivos , Hemorragia Intracraneal Traumática/inducido químicamente , Hemorragia/inducido químicamente , Hemorragias Intracraneales/inducido químicamente
14.
Autism Res ; 17(8): 1665-1676, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38896553

RESUMEN

Younger siblings (SIBS) of children with autism exhibit a wide range of clinical and subclinical symptoms including social, cognitive, language, and adaptive functioning delays. Identifying factors linked with this phenotypic heterogeneity is essential for improving understanding of the underlying biology of the heterogenous outcomes and for early identification of the most vulnerable SIBS. Prevalence of neurodevelopmental (NDD) and neuropsychiatric disorders (NPD) is significantly elevated in families of children with autism. It remains unknown, however, if the family history associates with the developmental outcomes among the SIBS. We quantified history of the NDDs and NPDs commonly reported in families of children with autism using a parent interview and assessed autism symptoms, verbal, nonverbal, and adaptive skills in a sample of 229 SIBS. Multiple regression analyses were used to examine links between family history and phenotypic outcomes, whereas controlling for birth year, age, sex, demographics, and parental education. Results suggest that family history of schizophrenia, depression, anxiety, bipolar disorder, and intellectual disability associate robustly with dimensional measures of social affect, verbal and nonverbal IQ, and adaptive functioning in the SIBS. Considering family history of these disorders may improve efforts to predict long-term outcomes in younger siblings of children with autism and inform about familial factors contributing to high phenotypic heterogenetity in this cohort.


Asunto(s)
Trastorno Autístico , Trastornos Mentales , Hermanos , Humanos , Masculino , Femenino , Niño , Preescolar , Trastorno Autístico/genética , Trastornos Mentales/genética , Trastornos Mentales/epidemiología , Trastorno del Espectro Autista/genética
15.
Nat Med ; 12(11): 1253-5, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17072310

RESUMEN

The cycle of gallbladder filling and emptying controls the flow of bile into the intestine for digestion. Here we show that fibroblast growth factor-15, a hormone made by the distal small intestine in response to bile acids, is required for gallbladder filling. These studies demonstrate that gallbladder filling is actively regulated by an endocrine pathway and suggest a postprandial timing mechanism that controls gallbladder motility.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Vesícula Biliar/fisiología , Animales , Colecistoquinina/sangre , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/genética , Vesícula Biliar/metabolismo , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética
16.
Nat Neurosci ; 26(9): 1505-1515, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563294

RESUMEN

Idiopathic autism spectrum disorder (ASD) is highly heterogeneous, and it remains unclear how convergent biological processes in affected individuals may give rise to symptoms. Here, using cortical organoids and single-cell transcriptomics, we modeled alterations in the forebrain development between boys with idiopathic ASD and their unaffected fathers in 13 families. Transcriptomic changes suggest that ASD pathogenesis in macrocephalic and normocephalic probands involves an opposite disruption of the balance between excitatory neurons of the dorsal cortical plate and other lineages such as early-generated neurons from the putative preplate. The imbalance stemmed from divergent expression of transcription factors driving cell fate during early cortical development. While we did not find genomic variants in probands that explained the observed transcriptomic alterations, a significant overlap between altered transcripts and reported ASD risk genes affected by rare variants suggests a degree of gene convergence between rare forms of ASD and the developmental transcriptome in idiopathic ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Masculino , Humanos , Trastorno Autístico/genética , Trastorno del Espectro Autista/patología , Neuronas/metabolismo , Neurogénesis , Prosencéfalo/metabolismo , Organoides/metabolismo
17.
Plant Commun ; 4(6): 100639, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37322867

RESUMEN

Jasmonates (JAs) are plant hormones with crucial roles in development and stress resilience. They activate MYC transcription factors by mediating the proteolysis of MYC inhibitors called JAZ proteins. In the absence of JA, JAZ proteins bind and inhibit MYC through the assembly of MYC-JAZ-Novel Interactor of JAZ (NINJA)-TPL repressor complexes. However, JAZ and NINJA are predicted to be largely intrinsically unstructured, which has precluded their experimental structure determination. Through a combination of biochemical, mutational, and biophysical analyses and AlphaFold-derived ColabFold modeling, we characterized JAZ-JAZ and JAZ-NINJA interactions and generated models with detailed, high-confidence domain interfaces. We demonstrate that JAZ, NINJA, and MYC interface domains are dynamic in isolation and become stabilized in a stepwise order upon complex assembly. By contrast, most JAZ and NINJA regions outside of the interfaces remain highly dynamic and cannot be modeled in a single conformation. Our data indicate that the small JAZ Zinc finger expressed in Inflorescence Meristem (ZIM) motif mediates JAZ-JAZ and JAZ-NINJA interactions through separate surfaces, and our data further suggest that NINJA modulates JAZ dimerization. This study advances our understanding of JA signaling by providing insights into the dynamics, interactions, and structure of the JAZ-NINJA core of the JA repressor complex.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Ciclopentanos/metabolismo
18.
J Biol Chem ; 286(4): 2877-85, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21068381

RESUMEN

Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.


Asunto(s)
Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/química , Receptores de Hormona Tiroidea/metabolismo , Vitamina A/química , Vitaminas/química , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Humanos , Mutación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Esteroides/genética , Receptores de Hormona Tiroidea/genética , Relación Estructura-Actividad , Vitamina A/farmacología , Vitaminas/farmacología
19.
Proc Natl Acad Sci U S A ; 106(23): 9138-43, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19497877

RESUMEN

Nematode parasitism is a worldwide health problem resulting in malnutrition and morbidity in over 1 billion people. The molecular mechanisms governing infection are poorly understood. Here, we report that an evolutionarily conserved nuclear hormone receptor signaling pathway governs development of the stage 3 infective larvae (iL3) in several nematode parasites, including Strongyloides stercoralis, Ancylostoma spp., and Necator americanus. As in the free-living Caenorhabditis elegans, steroid hormone-like dafachronic acids induced recovery of the dauer-like iL3 in parasitic nematodes by activating orthologs of the nuclear receptor DAF-12. Moreover, administration of dafachronic acid markedly reduced the pathogenic iL3 population in S. stercoralis, indicating the potential use of DAF-12 ligands to treat disseminated strongyloidiasis. To understand the pharmacology of targeting DAF-12, we solved the 3-dimensional structure of the S. stercoralis DAF-12 ligand-binding domain cocrystallized with dafachronic acids. These results reveal the molecular basis for DAF-12 ligand binding and identify nuclear receptors as unique therapeutic targets in parasitic nematodes.


Asunto(s)
Ancylostoma/metabolismo , Necator americanus/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Infecciones por Strongylida/parasitología , Strongyloides stercoralis/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Colestenos/metabolismo , Cristalografía por Rayos X , Humanos , Larva , Modelos Moleculares , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/química , Esteroides/metabolismo , Infecciones por Strongylida/tratamiento farmacológico
20.
J Pain Palliat Care Pharmacother ; 36(2): 112-116, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35471125

RESUMEN

Capsaicin is a topical pain reliever that has been evaluated by randomized controlled trials (RCTs) as a potential adjunctive therapy for treating unmitigated fibromyalgia. Therefore, a review of English articles using PubMed and Embase was conducted from January 1, 1990 to February 9, 2022 in order to evaluate the utility of capsaicin for improvement of sleep quality and fatigue associated with fibromyalgia. The search terms included: "fibromyalgia" and "capsaicin". Articles included were RCTs evaluating capsaicin in adult patients with fibromyalgia. Two studies met criteria and included 175 patients that received either capsaicin or placebo for an average total treatment length of 5 weeks. The treatment outcomes assessed were changes in quality of sleep and fatigue by several standardized modalities. These include visual analog scale (VAS) of sleep quality and fatigue, fatigue severity scale, Pittsburgh Sleep Quality Index (PSQI), and global subjective improvement. Both studies demonstrated no changes in sleep quality, but one study did find a significant difference in global subjective improvement. This same study also found a significant improvement in fatigue. Consequently, this existing evidence is insufficient to warrant recommending capsaicin as adjunctive therapy for improvement in sleep quality and fatigue. Future studies regarding capsaicin therapy for fibromyalgia are needed.


Asunto(s)
Fibromialgia , Adulto , Capsaicina/uso terapéutico , Fatiga/tratamiento farmacológico , Fatiga/etiología , Fibromialgia/complicaciones , Fibromialgia/tratamiento farmacológico , Humanos , Dimensión del Dolor , Calidad del Sueño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA