Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 355: 120470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422852

RESUMEN

The global change in surface water quality calls for increased preparedness of drinking water utilities. The increasing frequency of extreme climatic events combined with global warming can impact source and treated water characteristics such as temperature and natural organic matter. On the other hand, water saving policies in response to water and energy crisis in some countries can aggravate the situation by increasing the water residence time in the drinking water distribution system (DWDS). This study investigates the individual and combined effect of increased dissolved organic carbon (DOC), increased temperature, and reduced water demand on fate and transport of chlorine and trihalomethanes (THMs) within a full-scale DWDS in Canada. Chlorine and THM prediction models were calibrated with laboratory experiments and implemented in EPANET-MATLAB toolkit for prediction in the DWDS under different combinations of DOC, temperature, and demand. The duration of low chlorine residuals (<0.2 mg/L) and high THM (>80 µg/L) periods within a day in each scenario was reported using a reliability index. Low-reliability zones prone to microbial regrowth or high THM exposure were then delineated geographically on the city DWDS. Results revealed that water demand reduction primarily affects chlorine availability, with less concern for THM formation. The reduction in nodal chlorine reliability was gradual with rising temperature and DOC of the treated water and reducing water demand. Nodal THM reliability remained unchanged until certain thresholds were reached, i.e., temperature >25 °C for waters with DOC <1.52 mg/L, and DOC >2.2 mg/L for waters with temperature = 17 °C. At these critical thresholds, an abrupt network-wide THM exceedance of 80 µg/L occurred. Under higher DOC and temperature levels in future, employing the proposed approach revealed that increasing the applied chlorine dosage (which is a conventional method used to ensure sufficient chlorine coverage) results in elevated exposure toTHMs and is not recommended. This approach aids water utilities in assessing the effectiveness of different intervention measures to solve water quality problems, identify site-specific thresholds leading to major decreases in system reliability, and integrate climate adaptation into water safety management.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Purificación del Agua/métodos , Trihalometanos/análisis , Cambio Climático , Reproducibilidad de los Resultados , Cloruros , Contaminantes Químicos del Agua/análisis , Desinfección
2.
Appl Environ Microbiol ; 89(5): e0010523, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37067412

RESUMEN

Compelling evidence suggests a contribution of the sink environment to the transmission of opportunistic pathogens from the hospital environment to patients in neonatal intensive care units (NICU). In this study, the distribution of the opportunistic pathogen Serratia marcescens in the sink environment and newborns in a NICU was investigated. More than 500 sink drain and faucet samples were collected over the course of five sampling campaigns undertaken over 3 years. Distribution and diversity of S. marcescens were examined with a modified MacConkey medium and a high-throughput short-sequence typing (HiSST) method. Sink drains were an important reservoir of S. marcescens, with an average of 44% positive samples, whereas no faucet sample was positive. The genotypic diversity of S. marcescens was moderate, with an average of two genotypes per drain, while the spatial distribution of S. marcescens was heterogeneous. The genotypic profiles of 52 clinical isolates were highly heterogeneous, with 27 unique genotypes, of which 71% of isolates were found in more than one patient. S. marcescens acquisition during the first outbreaks was mainly caused by horizontal transmissions. HiSST analyses revealed 10 potential cases of patient-to-patient transmission of S. marcescens, five cases of patient-to-sink transmission, and one bidirectional transfer between sink and patient. Environmental and clinical isolates were found in sink drains up to 1 year after the first detection, supporting persisting drain colonization. This extensive survey suggests multiple reservoirs of S. marcescens within the NICU, including patients and sink drains, but other external sources should also be considered. IMPORTANCE The bacterium Serratia marcescens is an important opportunistic human pathogen that thrives in many environments, can become multidrug resistant, and is often involved in nosocomial outbreaks in neonatal intensive care units (NICU). We evaluated the role of sinks during five suspected S. marcescens outbreaks in a NICU. An innovative approach combining molecular and culture methods was used to maximize the detection and typing of S. marcescens in the sink environment. Our results indicate multiple reservoirs of S. marcescens within the NICU, including patients, sink drains, and external sources. These results highlight the importance of sinks as a major reservoir of S. marcescens and potential sources of future outbreaks.


Asunto(s)
Infección Hospitalaria , Infecciones por Serratia , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Infección Hospitalaria/microbiología , Serratia marcescens/genética , Infecciones por Serratia/epidemiología , Brotes de Enfermedades
3.
Environ Monit Assess ; 195(9): 1042, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589790

RESUMEN

Worldwide, there has been an increase in the presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs). The objective of this study is to validate the use of in situ probes for the detection and management of cyanobacterial breakthrough in high and low-risk DWTPs. In situ phycocyanin YSI EXO2 probes were devised for remote control and data logging to monitor the cyanobacteria in raw, clarified, filtered, and treated water in three full-scale DWTPs. An additional probe was installed inside the sludge holding tank to measure the water quality of the surface of the sludge storage tank in a high-risk DWTP. Simultaneous grab samplings were carried out for taxonomic cell counts and toxin analysis. A total of 23, 9, and 4 field visits were conducted at the three DWTPs. Phycocyanin readings showed a 93-fold fluctuation within 24 h in the raw water of the high cyanobacterial risk plant, with higher phycocyanin levels during the afternoon period. These data provide new information on the limitations of weekly or daily grab sampling. Also, different moving averages for the phycocyanin probe readings can be used to improve the interpretation of phycocyanin signal trends. The in situ probe successfully detected high cyanobacterial biovolumes entering the clarification process in the high-risk plant. Grab sampling results revealed high cyanobacterial biovolumes in the sludge for both high and low-risk plants.


Asunto(s)
Cianobacterias , Agua Potable , Ficocianina , Aguas del Alcantarillado , Monitoreo del Ambiente
4.
Appl Environ Microbiol ; 87(24): e0139921, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34586910

RESUMEN

Molecular typing methods are used to characterize the relatedness between bacterial isolates involved in infections. These approaches rely mostly on discrete loci or whole-genome sequencing (WGS) analyses of pure cultures. On the other hand, their application to environmental DNA profiling to evaluate epidemiological relatedness among patients and environments has received less attention. We developed a specific, high-throughput short sequence typing (HiSST) method for the opportunistic human pathogen Serratia marcescens. Genes displaying the highest polymorphism were retrieved from the core genome of 60 S. marcescens strains. Bioinformatics analyses showed that use of only three loci (within bssA, gabR, and dhaM) distinguished strains with a high level of efficiency. This HiSST scheme was applied to an epidemiological survey of S. marcescens in a neonatal intensive care unit (NICU). In a first case study, a strain responsible for an outbreak in the NICU was found in a sink drain of this unit, by using HiSST scheme and confirmed by WGS. The HiSST scheme was also applied to environmental DNA extracted from sink-environment samples. Diversity of S. marcescens was modest, with 11, 6, and 4 different sequence types (ST) of gabR, bssA, and dhaM loci among 19 sink drains, respectively. Epidemiological relationships among sinks were inferred on the basis of pairwise comparisons of ST profiles. Further research aimed at relating ST distribution patterns to environmental features encompassing sink location, utilization, and microbial diversity is needed to improve the surveillance and management of opportunistic pathogens. IMPORTANCE Serratia marcescens is an important opportunistic human pathogen, often multidrug resistant and involved in outbreaks of nosocomial infections in neonatal intensive care units. Here, we propose a quick and user-friendly method to select the best typing scheme for nosocomial outbreaks in relating environmental and clinical sources. This method, named high-throughput short sequence typing (HiSST), allows to distinguish strains and to explore the diversity profile of nonculturable S. marcescens. The application of HiSST profile analysis for environmental DNA offers new possibilities to track opportunistic pathogens, identify their origin, and relate their distribution pattern with environmental features encompassing sink location, utilization, and microbial diversity. Adaptation of the method to other opportunistic pathogens is expected to improve knowledge regarding their ecology, which is of significant interest for epidemiological risk assessment and elaborate outbreak mitigation strategies.


Asunto(s)
Infección Hospitalaria , ADN Ambiental , Serratia marcescens/clasificación , Técnicas de Tipificación Bacteriana , Brotes de Enfermedades , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal
5.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33674435

RESUMEN

In large-building water systems, Legionella pneumophila is exposed to common environmental stressors such as copper. The aim of this study was to evaluate the susceptibility to copper of L. pneumophila isolates recovered from various sites: two clinical and seven environmental isolates from hot water system biofilm and water and from cooling tower water. After a 1-week acclimation in simulated drinking water, strains were exposed to various copper concentrations (0.8 to 5 mg/liter) for over 672 h. Complete loss of culturability was observed for three isolates following copper exposure to 5 mg/liter for 672 h. Two sequence type 1427 (ST1427)-like isolates were highly sensitive to copper, while the other two, isolated from biofilm samples, maintained higher culturability. The expression of the copper resistance gene copA evaluated by reverse transcription-quantitative PCR (RT-qPCR) was significantly higher for the biofilm isolates. All four ST1427-like isolates were recovered from the same water system during an outbreak. Whole-genome sequencing results confirmed that the four isolates are very close phylogenetically, differing by only 29 single nucleotide polymorphisms, suggesting in situ adaptation to microenvironmental conditions, possibly due to epigenetic regulation. These results indicate that the immediate environment within a building water distribution system influences the tolerance of L. pneumophila to copper. Increased contact of L. pneumophila biofilm strains with copper piping or copper alloys in the heat exchanger might lead to local adaptation. The phenotypic differences observed between water and biofilm isolates from the hot water system of a health care facility warrants further investigation to assess the relevance of evaluating disinfection performances based on water sampling alone.IMPORTANCELegionella pneumophila is a pathogen indigenous to natural and large building water systems in the bulk and the biofilm phases. The immediate environment within a system can impact the tolerance of L. pneumophila to environmental stressors, including copper. In health care facilities, copper levels in water can vary, depending on water quality, plumbing materials, and age. This study evaluated the impact of the isolation site (water versus biofilm, hot water system versus cooling tower) within building water systems. Closely related strains isolated from a health care facility hot water system exhibited variable tolerance to copper stress, shown by differential expression of copA, with biofilm isolates displaying highest expression and tolerance. Relying on the detection of L. pneumophila in water samples following exposure to environmental stressors such as copper may underestimate the prevalence of L. pneumophila, leading to inappropriate risk management strategies and increasing the risk of exposure for vulnerable patients.


Asunto(s)
Cobre/toxicidad , Agua Potable/microbiología , Hospitales , Legionella pneumophila , Abastecimiento de Agua , Adaptación Fisiológica , Biopelículas/efectos de los fármacos , Tolerancia a Medicamentos/genética , Genoma Bacteriano , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/genética , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/fisiología , Filogenia
6.
Risk Anal ; 41(8): 1413-1426, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33103797

RESUMEN

Temporal variations in concentrations of pathogenic microorganisms in surface waters are well known to be influenced by hydrometeorological events. Reasonable methods for accounting for microbial peaks in the quantification of drinking water treatment requirements need to be addressed. Here, we applied a novel method for data collection and model validation to explicitly account for weather events (rainfall, snowmelt) when concentrations of pathogens are estimated in source water. Online in situ ß-d-glucuronidase activity measurements were used to trigger sequential grab sampling of source water to quantify Cryptosporidium and Giardia concentrations during rainfall and snowmelt events at an urban and an agricultural drinking water treatment plant in Quebec, Canada. We then evaluate if mixed Poisson distributions fitted to monthly sampling data ( n = 30 samples) could accurately predict daily mean concentrations during these events. We found that using the gamma distribution underestimated high Cryptosporidium and Giardia concentrations measured with routine or event-based monitoring. However, the log-normal distribution accurately predicted these high concentrations. The selection of a log-normal distribution in preference to a gamma distribution increased the annual mean concentration by less than 0.1-log but increased the upper bound of the 95% credibility interval on the annual mean by about 0.5-log. Therefore, considering parametric uncertainty in an exposure assessment is essential to account for microbial peaks in risk assessment.


Asunto(s)
Criptosporidiosis/parasitología , Agua Potable/parasitología , Giardia , Giardiasis/parasitología , Lluvia , Medición de Riesgo/métodos , Nieve , Ciudades , Criptosporidiosis/prevención & control , Cryptosporidium , Monitoreo del Ambiente , Giardiasis/prevención & control , Humanos , Quebec , Ríos , Microbiología del Agua , Purificación del Agua
7.
Risk Anal ; 41(8): 1396-1412, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33103818

RESUMEN

The identification of appropriately conservative statistical distributions is needed to predict microbial peak events in drinking water sources explicitly. In this study, Poisson and mixed Poisson distributions with different upper tail behaviors were used for modeling source water Cryptosporidium and Giardia data from 30 drinking water treatment plants. Small differences (<0.5-log) were found between the "best" estimates of the mean Cryptosporidium and Giardia concentrations with the Poisson-gamma and Poisson-log-normal models. However, the upper bound of the 95% credibility interval on the mean Cryptosporidium concentrations of the Poisson-log-normal model was considerably higher (>0.5-log) than that of the Poisson-gamma model at four sites. The improper choice of a model may, therefore, mislead the assessment of treatment requirements and health risks associated with the water supply. Discrimination between models using the marginal deviance information criterion (mDIC) was unachievable because differences in upper tail behaviors were not well characterized with available data sets ( n<30 ). Therefore, the gamma and the log-normal distributions fit the data equally well but may predict different risk estimates when they are used as an input distribution in an exposure assessment. The collection of event-based monitoring data and the modeling of larger routine monitoring data sets are recommended to identify appropriately conservative distributions to predict microbial peak events.


Asunto(s)
Criptosporidiosis/parasitología , Agua Potable/parasitología , Giardia/parasitología , Giardiasis/parasitología , Microbiología del Agua , Teorema de Bayes , Criptosporidiosis/prevención & control , Cryptosporidium , Monitoreo del Ambiente/métodos , Giardiasis/prevención & control , Humanos , Oocistos , Distribución de Poisson , Medición de Riesgo/métodos , Purificación del Agua/métodos , Abastecimiento de Agua
8.
J Water Health ; 17(5): 701-716, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31638022

RESUMEN

The variability of fecal microorganisms and wastewater micropollutants (WWMPs) loads in relation to influent flow rates was evaluated for a water resource recovery facility (WRRF) in support of a vulnerability assessment of a drinking water source. Incomplete treatment and bypass discharges often occur following intense precipitation events that represent conditions that deviate from normal operation. Parasites, fecal indicator bacteria, and WWMPs concentrations and flow rate were measured at the WRRF influent and effluent during dry and wet weather periods. Influent concentrations were measured to characterize potential bypass concentrations that occur during wet weather. Maximum influent Giardia and C. perfringens loads and maximum effluent Escherichia coli and C. perfringens loads were observed during wet weather. Influent median loads of Cryptosporidium and Giardia were 6.8 log oocysts/day and 7.9 log cysts/day per 1,000 people. Effluent median loads were 3.9 log oocysts/day and 6.3 log cysts/day per 1,000 people. High loads of microbial contaminants can occur during WRRF bypasses following wet weather and increase with increasing flow rates; thus, short-term infrequent events such as bypasses should be considered in vulnerability assessments of drinking water sources in addition to the increased effluent loads during normal operation following wet weather.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales/química , Purificación del Agua , Animales , Bacterias , Cryptosporidium , Giardia , Parásitos , Aguas Residuales/microbiología , Aguas Residuales/parasitología , Recursos Hídricos
9.
J Environ Manage ; 249: 109386, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31421478

RESUMEN

As one of the major sources of surface water quality impairments, Combined Sewer Overflows (CSOs) are of concern when receiving waters are used for drinking water supplies. Given the large number and variability in CSO discharges and loads, there is a need for a general methodology for estimating discharges for environmental planning and source water protection. Detailed data on CSO flowrates, contaminant concentrations including Total Suspended Solids (TSS), Escherichia coli (E. coli), caffeine (CAF) and acetaminophen (ACE) were used to develop a simple loading model that was then verified using discharge and concentration data from other CSO and stormwater events in the literature. The variability of the parameters within each event was analyzed by normalizing flowrate, concentration and event duration to their respective peak values. The normalized flowrate data indicate that the second decile of the discharge periods was associated with peak flowrates. The dynamic behavior of CSO flowrates can be characterized by a linearly increasing trend and then a logarithmically decreasing trend in terms of normalized values. The samples captured during the first decile of the events were illustrated to be a better representation of peak concentrations of all four contaminants. By analyzing the discharge period in three sections (i.e. 1st decile, 2nd decile and remainder), a semi-probabilistic CSO loading model is proposed for the entire discharge period taking into account the variability of the phenomena. Findings can help water managers and utilities to characterize their source waters for better planning and to more efficiently design sampling campaigns for capturing peak concentrations at drinking water treatment plants.


Asunto(s)
Monitoreo del Ambiente , Purificación del Agua , Escherichia coli , Aguas del Alcantarillado , Calidad del Agua , Abastecimiento de Agua
10.
Environ Sci Technol ; 52(16): 9451-9459, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30027743

RESUMEN

Profile, regulatory, and investigative sampling were completed in six utilities to study the impact of partial and full lead service line replacements (LSLRs) on water lead levels (WLLs) and consumer's exposure. As compared to households with no replacement, lead release after partial LSLR (PLSLR) was generally greater in the short term (3-50 days), and comparable or lower in the medium (<2 years) and long-term (>2 years). This was mainly explained by insufficient time elapsed to stabilize scales after disturbances to the service line. One utility showed sustained lead release over 18 months after PLSLR. Moreover, the reduction in WLLs was small when analyzing results for the same households. As a comparison, full LSLR decreased WLLs drastically and immediately. The occurrence of low (0-5 µg/L) to high (≥50 µg/L) WLLs in the profiles varied between households and reflected the variability of exposure among households in the same system. Using this probability of occurrence, the distribution of WLLs of exposure was estimated for households with or without a PLSLR, and used to model young children blood lead levels (BLLs) for both groups of households. The range of modeled BLLs decreased slightly for households with PLSLR, but still overlapped the range estimated for households with no replacement. This analysis suggests that, in a system, PLSLRs do not reduce young children blood lead levels except in a fraction of households.


Asunto(s)
Agua Potable , Publicaciones , Contaminantes Químicos del Agua , Niño , Preescolar , Exposición a Riesgos Ambientales , Humanos , Plomo , Probabilidad
11.
Environ Sci Technol ; 51(17): 9507-9515, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28791866

RESUMEN

Thirty-three households were monitored in a full-scale water distribution system, to investigate the impact of recent (<2 yr) or old partial lead service line replacements (PLSLRs). Total and particulate lead concentrations were measured using repeat sampling over a period of 1-20 months. Point-of-entry filters were installed to capture sporadic release of particulate lead from the lead service lines (LSLs). Mean concentrations increased immediately after PLSLRs and erratic particulate lead spikes were observed over the 18 month post-PLSLR monitoring period. The mass of lead released during this time frame indicates the occurrence of galvanic corrosion and scale destabilization. System-wide, lead concentrations were however lower in households with PLSLRs as compared to those with no replacement, especially for old PLSLRs. Nonetheless, 61% of PLSLR samples still exceeded 10 µg/L, reflecting the importance of implementing full LSL replacement and efficient risk communication. Acute concentrations measured immediately after PLSLRs demonstrate the need for appropriate flushing procedures to prevent lead poisoning.


Asunto(s)
Agua Potable , Intoxicación por Plomo/prevención & control , Plomo/análisis , Ingeniería Sanitaria , Agua , Contaminantes Químicos del Agua , Abastecimiento de Agua
12.
J Environ Manage ; 174: 62-70, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27011341

RESUMEN

The quality of a drinking water source depends largely on upstream contaminant discharges. Sewer overflows can have a large influence on downstream drinking water intakes as they discharge untreated or partially treated wastewaters that may be contaminated with pathogens. This study focuses on the quantification of Escherichia coli discharges from combined sewer overflows (CSOs) and the dispersion and diffusion in receiving waters in order to prioritize actions for source water protection. E. coli concentrations from CSOs were estimated from monitoring data at a series of overflow structures and then applied to the 42 active overflow structures between 2009 and 2012 using a simple relationship based upon the population within the drainage network. From these estimates, a transport-dispersion model was calibrated with data from a monitoring program from both overflow structures and downstream drinking water intakes. The model was validated with 15 extreme events such as a large number of overflows (n > 8) or high concentrations at drinking water intakes. Model results demonstrated the importance of the cumulative effects of CSOs on the degradation of water quality downstream. However, permits are typically issued on a discharge point basis and do not consider cumulative effects. Source water protection plans must consider the cumulative effects of discharges and their concentrations because the simultaneous discharge of multiple overflows can lead to elevated E. coli concentrations at a drinking water intake. In addition, some CSOs have a disproportionate impact on peak concentrations at drinking water intakes. As such, it is recommended that the management of CSOs move away from frequency based permitting at the discharge point to focus on the development of comprehensive strategies to reduce cumulative and peak discharges from CSOs upstream of drinking water intakes.


Asunto(s)
Agua Potable/microbiología , Monitoreo del Ambiente/métodos , Escherichia coli/aislamiento & purificación , Heces/microbiología , Aguas del Alcantarillado/microbiología , Microbiología del Agua , Purificación del Agua/métodos , Calidad del Agua
13.
Mol Cell Proteomics ; 12(5): 1468-86, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23362328

RESUMEN

RepoMan is a protein phosphatase 1 (PP1) regulatory subunit that targets the phosphatase to key substrates throughout the cell cycle. Most work to date has focused on the mitotic roles of RepoMan/PP1, although equally important interphase role(s) have been demonstrated. Initial mapping of the interactome of nuclear RepoMan, both endogenous and tagged, was complicated by various factors, including antibody cross-reactivity and low sensitivity of the detection of chromatin-associated partners above the high background of proteins that bind nonspecifically to affinity matrices. We therefore adapted the powerful combination of fluorescence imaging with labeling-based quantitative proteomics to map the "fragmentomes" of specific regions of RepoMan. These regions demonstrate distinct localization patterns and turnover dynamics that reflect underlying binding events. The increased sensitivity and signal-to-noise ratio provided by this unique approach facilitated identification of a large number of novel RepoMan interactors, several of which were rigorously validated in follow-up experiments, including the association of RepoMan/PP1 with a specific PP2A-B56γ complex, interaction with ribosomal proteins and import factors involved in their nucleocytoplasmic transport and interaction with proteins involved in the response to DNA damage. This same strategy can be used to investigate the cellular roles of other modular proteins.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/química , Mapeo de Interacción de Proteínas , Proteoma/metabolismo , Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Células HeLa , Humanos , Mitosis , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína Fosfatasa 2/metabolismo , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteoma/química , Receptores de Neuropéptido Y/metabolismo
14.
Ecotoxicol Environ Saf ; 120: 409-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26122734

RESUMEN

The effects of particulate attached bacteria (PAB) and phycocyanin on the simultaneous biodegradation of a mixture of microcystin-LR, YR, LY, LW, LF and cylindrospermopsin (CYN) was assessed in clarifier sludge of a drinking water treatment plant (DWTP) and in a drinking water source. The biomass from lake water and clarifier sludge was able to degrade all microcystins (MCs) at initial concentrations of 10µgL(-1) with pseudo-first order reaction half-lives ranging from 2.3 to 8.8 days. CYN was degraded only in the sludge with a biodegradation rate of 1.0×10(-1)d(-1) and a half-life of 6.0 days. This is the first study reporting multiple MCs and CYN biodegradation in the coagulation-flocculation sludge of a DWTP. The removal of PAB from the lake water and the sludge prolonged the lag time substantially, such that no biodegradation of MCLY, LW and LF was observed within 24 days. Biodegradation rates were shown to increase in the presence of C-phycocyanin as a supplementary carbon source for indigenous bacteria, a cyanobacterial product that accompanies cyanotoxins during cyanobacteria blooms. MCs in mixtures degraded more slowly (or not at all) than if they were degraded individually, an important outcome as MCs in the environment are often present in mixtures. The results from this study showed that the majority of the bacterial biomass responsible for the biodegradation of cyanotoxins is associated with particles or biological flocs and there is a potential for extreme accumulation of cyanotoxins within the DWTP during a transient bloom.


Asunto(s)
Cianobacterias/metabolismo , Agua Potable/química , Microcistinas/química , Ficocianina/química , Aguas del Alcantarillado/química , Uracilo/análogos & derivados , Alcaloides , Toxinas Bacterianas , Biodegradación Ambiental , Biomasa , Toxinas de Cianobacterias , Agua Potable/microbiología , Floculación , Agua Dulce , Semivida , Lagos/microbiología , Microcistinas/toxicidad , Aguas del Alcantarillado/microbiología , Uracilo/química , Uracilo/toxicidad , Purificación del Agua/métodos
15.
Sci Total Environ ; 939: 173651, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38821274

RESUMEN

Secondary disinfection aims to prevent microbial regrowth during distribution by maintaining disinfectant residuals in water systems. However, multi-factorial interactions contribute to free chlorine decay in distribution systems, and even more so in building plumbing. Assembling 1737 samples from nine large institutional buildings, a meta-analysis was conducted to determine whether building managers can actively rely on incoming free chlorine residuals to prevent in-building microbial amplification. Findings showed that free chlorine concentrations in first draws met the 0.2 mg/L common guide level in respectively 26 %, 6 % and 2 % of cold, tepid and hot water samples, whereas flushing for 2-60 min only significantly increased this ratio in cold water (83 %), without reaching background levels found in service lines. Free chlorine was significantly but weakly (R≤ 0.2) correlated to adenosine triphosphate, heterotrophic plate count and total and intact cell counts, thus evidencing that residuals contributed to decreased culturable and viable biomass. Detection of culturable Legionella pneumophila spanning over a 4-log distribution solely occurred when free chlorine levels were below 0.2 mg/L, but no such trend could be distinguished clearly for culturable Pseudomonas aeruginosa. Water temperatures below 20 °C and >60 °C also completely prevented L. pneumophila detection. Overall, the majority of elevated microbial counts were measured in distal sites and in tepid and hot water, where free chlorine is less likely to be present due to stagnation and increased temperature. Therefore, building managers cannot solely rely on this chemical barrier to mitigate bacterial growth in bulk water.


Asunto(s)
Cloro , Desinfectantes , Desinfección , Microbiología del Agua , Cloro/análisis , Desinfectantes/análisis , Desinfección/métodos , Legionella pneumophila/crecimiento & desarrollo , Ingeniería Sanitaria
16.
PLoS One ; 19(6): e0304378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38865328

RESUMEN

OBJECTIVE: Evaluate the effects of five disinfection methods on bacterial concentrations in hospital sink drains, focusing on three opportunistic pathogens (OPs): Serratia marcescens, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. DESIGN: Over two years, three sampling campaigns were conducted in a neonatal intensive care unit (NICU). Samples from 19 sink drains were taken at three time points: before, during, and after disinfection. Bacterial concentration was measured using culture-based and flow cytometry methods. High-throughput short sequence typing was performed to identify the three OPs and assess S. marcescens persistence after disinfection at the genotypic level. SETTING: This study was conducted in a pediatric hospitals NICU in Montréal, Canada, which is divided in an intensive and intermediate care side, with individual rooms equipped with a sink. INTERVENTIONS: Five treatments were compared: self-disinfecting drains, chlorine disinfection, boiling water disinfection, hot tap water flushing, and steam disinfection. RESULTS: This study highlights significant differences in the effectiveness of disinfection methods. Chlorine treatment proved ineffective in reducing bacterial concentration, including the three OPs. In contrast, all other drain interventions resulted in an immediate reduction in culturable bacteria (4-8 log) and intact cells (2-3 log). Thermal methods, particularly boiling water and steam treatments, exhibited superior effectiveness in reducing bacterial loads, including OPs. However, in drains with well-established bacterial biofilms, clonal strains of S. marcescens recolonized the drains after heat treatments. CONCLUSIONS: Our study supports thermal disinfection (>80°C) for pathogen reduction in drains but highlights the need for additional trials and the implementation of specific measures to limit biofilm formation.


Asunto(s)
Desinfección , Unidades de Cuidado Intensivo Neonatal , Serratia marcescens , Serratia marcescens/efectos de los fármacos , Desinfección/métodos , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Recién Nacido , Stenotrophomonas maltophilia/efectos de los fármacos , Infecciones por Serratia/microbiología , Infecciones por Serratia/prevención & control , Infección Hospitalaria/prevención & control , Infección Hospitalaria/microbiología
17.
Water Res ; 256: 121490, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614028

RESUMEN

Urbanization increases the land surface temperature through surface mineralization, adversely affecting vegetation and enhancing the urban heat island (UHI) effect. Global climate change has intensified this warming effect with more frequent and intense heatwaves during hot seasons. While these transformations influence soil temperature, their consequences on drinking water temperature within the drinking water distribution system (DWDS) remains poorly understood. Literature proposes to increase pipe burial depths to mitigate drinking water heating during summer. In this study, we monitored drinking water temperatures in a DWDS in Montreal, Canada with deeply buried pipes (average 1.8 m) during the summer of 2022, focusing on two contrasting zones in terms of UHI and green coverage. Monitoring revealed a 8°C heating effect compared to the water treatment plant, attributed to low green coverage and anthropogenic heat. Conversely, the greener zone exhibited cooler drinking water temperatures, reaching a maximum cooling effect of 8°C as compared to the temperature at the exit of the water treatment plant. Utilizing a soil and water temperature model, we predicted drinking water temperatures within the DWDS with acceptable accuracy. Soil temperature modeling results aligned well with measured water temperatures, highlighting DWDS water temperature approaching its surrounding soil temperature fairly quickly. Despite heatwaves, no immediate correlation emerged between air temperature records and measured water temperatures, emphasizing soil temperature as a superior indicator. An increase in water age displayed no correlation with an increase in measured water temperature, underscoring the dominant influence of UHI and green coverage on water temperature. These findings highlight the cooling advantages of green spaces during summer, providing valuable insights for sustainable urban planning.


Asunto(s)
Ciudades , Agua Potable , Calor , Temperatura , Quebec , Canadá , Cambio Climático , Monitoreo del Ambiente/métodos , Modelos Teóricos , Abastecimiento de Agua , Estaciones del Año
18.
Water Res ; 254: 121374, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38422696

RESUMEN

Intense rainfall and snowmelt events may affect the safety of drinking water, as large quantities of fecal material can be discharged from storm or sewage overflows or washed from the catchment into drinking water sources. This study used ß-d-glucuronidase activity (GLUC) with microbial source tracking (MST) markers: human, bovine, porcine mitochondrial DNA markers (mtDNA) and human-associated Bacteroidales HF183 and chemical source tracking (CST) markers including caffeine, carbamazepine, theophylline and acetaminophen, pathogens (Giardia, Cryptosporidium, adenovirus, rotavirus and enterovirus), water quality indicators (Escherichia coli, turbidity) and hydrometeorological data (flowrate, precipitation) to assess the vulnerability of 3 drinking water intakes (DWIs) and identify sources of fecal contamination. Water samples were collected under baseline, snow and rain events conditions in urban and agricultural catchments (Québec, Canada). Dynamics of E. coli, HF183 and WWMPs were similar during contamination events, and concentrations generally varied over 1 order of magnitude during each event. Elevated human-associated marker levels during events demonstrated that urban DWIs were impacted by recent contamination from an upstream municipal water resource recovery facility (WRRF). In the agricultural catchment, mixed fecal pollution was observed with the occurrences and increases of enteric viruses, human bovine and porcine mtDNA during peak contaminating events. Bovine mtDNA qPCR concentrations were indicative of runoff of cattle-derived fecal pollutants to the DWI from diffuse sources following rain events. This study demonstrated that the suitability of a given MST or CST indicator depend on river and catchment characteristics. The sampling strategy using continuous online GLUC activity coupled with MST and CST markers analysis was a more reliable source indicator than turbidity to identify peak events at drinking water intakes.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Agua Potable , Enterovirus , Animales , Bovinos , Porcinos , Humanos , Escherichia coli , Monitoreo del Ambiente , ADN Mitocondrial , Glucuronidasa
19.
Sci Total Environ ; 950: 175136, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39084374

RESUMEN

Precise and rapid methods are needed to improve monitoring approaches of L. pneumophila (Lp) in cooling towers (CTs) to allow timely operational adjustments and prevent outbreaks. The performance of liquid culture (ASTM D8429-21) and an online qPCR device were first compared to conventional filter plate culture (ISO 11731-2017), qPCR and semi-automated qPCR at three spiked concentrations of Lp (serogroup 1) validated by flow cytometry (total/viable cell count). The most accurate was qPCR, followed by liquid culture, online and semi-automated qPCR, and lastly, by a significant margin, filter plate culture. An industrial CT system was monitored using liquid and direct plate culture by the facility, qPCR and online qPCR. Direct plate and liquid culture results agreed at regulatory sampling point, supporting the use of the faster liquid culture for monitoring culturable Lp. During initial operation, qPCR and online qPCR results were within one log of culture at the primary pump before deviating after first cleaning. Other points revealed high spatial variability of Lp. The secondary pumps and chiller had the most positivity and highest concentrations by both qPCR and liquid culture compared to the basin and infeed tank. Altogether, this suggests that results from monthly compliance sampling at a single location with plate culture are not representative of Lp risks in this CT due to the high temporal and spatial variability. The primary pump, rather than the CT basin, should be designated for sampling, as it is representative of the health risk. An annual multi point survey of the system should be conducted to identify and target Lp hot spots. Generally, a combination of liquid culture for compliance and frequent qPCR for process control provides a more agile and robust monitoring scheme than plate culture alone, enabling early treatment adjustments, due to lower limit of detection (LOD) and turnover time.


Asunto(s)
Monitoreo del Ambiente , Legionella pneumophila , Microbiología del Agua , Monitoreo del Ambiente/métodos , Aire Acondicionado , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Microorganisms ; 11(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37374862

RESUMEN

Shock chlorination and remedial flushing are suggested to address Legionella pneumophila (Lp) contamination in buildings or during their (re)commissioning. However, data on general microbial measurements (adenosine tri-phosphate [ATP], total cell counts [TCC]), and the abundance of Lp are lacking to support their temporary implementation with variable water demands. In this study, the weekly short-term (3-week) impact of shock chlorination (20-25 mg/L free chlorine, 16 h) or remedial flushing (5-min flush) combined with distinct flushing regimes (daily, weekly, stagnant) was investigated in duplicates of showerheads in two shower systems. Results showed that the combination of stagnation and shock chlorination prompted biomass regrowth, with ATP and TCC in the first draws reaching large regrowth factors of 4.31-7.07-fold and 3.51-5.68-fold, respectively, from baseline values. Contrastingly, remedial flushing followed by stagnation generally resulted in complete or larger regrowth in Lp culturability and gene copies (gc). Irrespective of the intervention, daily flushed showerheads resulted in significantly (p < 0.05) lower ATP and TCC, as well as lower Lp concentrations than weekly flushes, in general. Nonetheless, Lp persisted at concentrations ranging from 11 to 223 as the most probable number per liter (MPN/L) and in the same order of magnitude (103-104 gc/L) than baseline values after remedial flushing, despite daily/weekly flushing, unlike shock chlorination which suppressed Lp culturability (down 3-log) for two weeks and gene copies by 1-log. This study provides insights on the most optimal short-term combination of remedial and preventative strategies that can be considered pending the implementation of suitable engineering controls or building-wide treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA