Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Glia ; 71(2): 259-283, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36128720

RESUMEN

Unlike mammals, zebrafish possess a remarkable ability to regenerate damaged retina after an acute injury. Retina regeneration in zebrafish involves the induction of Müller glia-derived progenitor cells (MGPCs) exhibiting stem cell-like characteristics, which are capable of restoring all retinal cell-types. The induction of MGPC through Müller glia-reprograming involves several cellular, genetic and biochemical events soon after a retinal injury. Despite the knowledge on the importance of Phosphatase and tensin homolog (Pten), which is a dual-specificity phosphatase and tumor suppressor in the maintaining of cellular homeostasis, its importance during retina regeneration remains unknown. Here, we explored the importance of Pten during zebrafish retina regeneration. The Pten gets downregulated upon retinal injury and is absent from the MGPCs, which is essential to trigger Akt-mediated cellular proliferation essential for retina regeneration. We found that the downregulation of Pten in the post-injury retina accelerates MGPCs formation, while its overexpression restricts the regenerative response. We observed that Pten regulates the proliferation of MGPCs not only through Akt pathway but also by Mmp9/Notch signaling. Mmp9-activity is essential to induce the proliferation of MGPCs in the absence of Pten. Lastly, we show that expression of Pten is fine-tuned through Mycb/histone deacetylase1 and Tgf-ß signaling. The present study emphasizes on the stringent regulation of Pten and its crucial involvement during the zebrafish retina regeneration.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Redes Reguladoras de Genes , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Ependimogliales/metabolismo , Neuroglía/metabolismo , Regeneración/fisiología , Retina/metabolismo , Regeneración Nerviosa , Proliferación Celular/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
2.
J Evol Biol ; 36(4): 730-737, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36946997

RESUMEN

Sexual selection is a major force influencing the evolution of sexually reproducing species. Environmental factors such as larval density can manipulate adult condition and influence the direction and strength of sexual selection. While most studies on the influence of larval crowding on sexual selection are either correlational or single-generation manipulations, it is unclear how evolution under chronic larval crowding affects sexual selection. To answer this, we measured the strength of sexual selection on male and female Drosophila melanogaster that had evolved under chronic larval crowding for over 250 generations in the laboratory, along with their controls which had never experienced crowding, in a common garden high-density environment. We measured selection coefficients on male mating success and sex-specific reproductive success, as separate estimates allowed dissection of sex-specific effects. We show that experimental evolution under chronic larval crowding decreases the strength of sexual and fecundity selection in males but not in females, relative to populations experiencing crowding for the first time. The effect of larval crowding in reducing reproductive success is almost twice in females than in males. Our study highlights the importance of studying how evolution in a novel, stressful environment can shape adult fitness in organisms.


Asunto(s)
Adaptación Fisiológica , Drosophila melanogaster , Animales , Femenino , Masculino , Drosophila melanogaster/genética , Larva , Aclimatación , Fertilidad , Conducta Sexual Animal , Evolución Biológica
3.
Proc Biol Sci ; 289(1974): 20220532, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35506222

RESUMEN

Rapid exaggeration of host and pathogen traits via arms race dynamics is one possible outcome of host-pathogen coevolution. However, the exaggerated traits are expected to incur costs in terms of resource investment in other life-history traits. The current study investigated the costs associated with evolved traits in a host-pathogen coevolution system. We used the Drosophila melanogaster (host)-Pseudomonas entomophila (pathogen) system to experimentally derive two selection regimes, one where the host and pathogen both coevolved, and the other, where only the host evolved against a non-evolving pathogen. After 17 generations of selection, we found that hosts from both selected populations had better post-infection survivorship than controls. Even though the coevolving populations tended to have better survivorship post-infection, we found no clear evidence that the two selection regimes were significantly different from each other. There was weak evidence for the coevolving pathogens being more virulent than the ancestral pathogen. We found no major cost of increased post-infection survivorship. The costs were not different between the coevolving hosts and the hosts evolving against a non-evolving pathogen. We found no evolved costs in the coevolving pathogens. Thus, our results suggest that increased host immunity and pathogen virulence may not be costly.


Asunto(s)
Drosophila melanogaster , Supervivencia , Animales , Pseudomonas , Sobrevida
4.
J Evol Biol ; 34(9): 1376-1385, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34197669

RESUMEN

The ability to tolerate temperature stress is an important component of adult fitness. In holometabolous insects like Drosophila melanogaster, adult stress resistance can be affected by growth conditions experienced during the larval stages. Although evolution under crowded larval conditions is known to lead to the correlated evolution of many adult traits, its consequences on adult heat stress tolerance have not been investigated. Therefore, in the present study, we assessed the adult heat stress tolerance in populations of D. melanogaster adapted to a stressful larval crowding environment. We used replicate populations of D. melanogaster, selected for adaptation to larval crowding stress (MCUs), for more than 230 generations, and their respective controls (MBs). Larvae from selected and control populations were grown under crowded and uncrowded conditions, and their adult heat shock resistance at two different temperatures was measured. Further, we compared Hsp70 expression in crowded and uncrowded larvae of both populations and also measured the Hsp70 expression after a mild heat treatment in adults of selected and control populations. Our results showed that adaptation to larval crowding leads to the evolution of Hsp70 gene expression in larval stages and improves adult heat stress tolerance ability in males, but not in females.


Asunto(s)
Drosophila melanogaster , Selección Genética , Animales , Evolución Biológica , Drosophila melanogaster/genética , Femenino , Respuesta al Choque Térmico/genética , Larva/genética , Masculino
5.
BMC Evol Biol ; 20(1): 13, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992187

RESUMEN

BACKGROUND: The theory of trade-off suggests that limited resources should lead to trade-off in resource intensive traits such as, immunity related and sexually selected traits in males. Alternatively, sexual exaggerations can also act as an honest indicator of underlying immunocompetence, leading to positive correlations between these traits. Evidences in support of either hypothesis in invertebrates are equivocal. Whereas several studies have addressed this question, few have used naturally occurring pathogens and realized post infection realized immunity (e.g., survivorship) to assay the fitness correlations between these two sets of traits. RESULTS: Adopting an experimental evolution approach, we evolved replicate populations of Drosophila melanogaster under high and low sexual selection regimes for over a hundred generations and found the following in virgin and mated males in three separate assays: a.Post infection survivorship against two natural pathogens - Pseudomonas entomophila (Pe) and Staphylococcus succinus (Ss): Mated males survived better against Pe, but were no different than virgins against Ss.b.Bacterial clearance ability against a third natural pathogen Providencia rettgeri (Pr): Mated males had significantly lower CFUs than virgins. However, sexual selection history had no effect on realized immunity of either virgin or mated males. CONCLUSION: We show that while mating can affect realized immunity in a pathogen specific way, sexual selection did not affect the same. The results highlight that complex polygenic traits such as immunity and reproductive traits not necessarily evolve following a binary trade-off model. We also stress the importance natural pathogens while studying sexual selection-immunity correlations.


Asunto(s)
Evolución Biológica , Drosophila melanogaster/inmunología , Drosophila melanogaster/fisiología , Inmunidad , Selección Genética , Conducta Sexual Animal/fisiología , Animales , Recuento de Colonia Microbiana , Drosophila melanogaster/microbiología , Femenino , Masculino , Fenotipo , Modelos de Riesgos Proporcionales , Pseudomonas/fisiología , Reproducción/fisiología , Staphylococcus/fisiología
6.
BMC Evol Biol ; 13: 212, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-24073883

RESUMEN

BACKGROUND: Interlocus conflict predicts (a) evolution of traits, beneficial to males but detrimental to females and (b) evolution of aging and life-span under the influence of the cost of bearing these traits. However, there are very few empirical investigations shedding light on these predictions. Those that do address these issues, mostly reported response of male reproductive traits or the lack of it and do not address the life-history consequence of such evolution. Here, we test both the above mentioned predictions using experimental evolution on replicate populations of Drosophila melanogaster. We present responses observed after >45 generations of altered levels of interlocus conflict (generated by varying the operational sex ratio). RESULTS: Males from the male biased (high conflict, M-regime) regime evolved higher spontaneous locomotor activity and courtship frequency. Females exposed to these males were found to have higher mortality rate. Males from the female biased regime (low conflict, F-regime) did not evolve altered courtship frequency and activity. However, progeny production of females continuously exposed to F-males was significantly higher than the progeny production of females exposed to M-males indicating that the F-males are relatively benign towards their mates. We found that males from male biased regime lived shorter compared to males from the female biased regime. CONCLUSION: F-males (evolving under lower levels of sexual conflict) evolved decreased mate harming ability indicating the cost of maintenance of the suit of traits that cause mate-harm. The M-males (evolving under higher levels sexual conflict) caused higher female mortality indicating that they had evolved increased mate harming ability, possibly as a by product of increased reproduction related activity. There was a correlated evolution of life-history of the M and F-males. M-regime males lived shorter compared to the males from F-regime, possibly due to the cost of investing more in reproductive traits. In combination, these results suggest that male reproductive traits and life-history traits can evolve in response to the altered levels of interlocus sexual conflict.


Asunto(s)
Drosophila melanogaster/fisiología , Animales , Evolución Biológica , Cortejo , Femenino , Longevidad , Masculino , Fenotipo , Reproducción , Razón de Masculinidad
7.
Sci Rep ; 12(1): 19536, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376445

RESUMEN

Cold stress is a critical environmental challenge that affects an organism's fitness-related traits. In Drosophila, increased resistance to specific environmental stress may lead to increased resistance to other kinds of stress. In the present study, we aimed to understand whether increased cold stress resistance in Drosophila melanogaster can facilitate their ability to tolerate other environmental stresses. For the current study, we used successfully selected replicate populations of D. melanogaster against cold shock and their control population. These selected populations have evolved several reproductive traits, including increased egg viability, mating frequency, male mating ability, ability to sire progenies, and faster recovery for mating latency under cold shock conditions. In the present work, we investigated egg viability and mating frequency with and without heat and cold shock conditions in the selected and their control populations. We also examined resistance to cold shock, heat shock, desiccation, starvation, and survival post-challenge with Staphylococcus succinus subsp. succinus PK-1 in the selected and their control populations. After cold-shock treatment, we found a 1.25 times increase in egg viability and a 1.57 times increase in mating frequency in the selected populations compared to control populations. Moreover, more males (0.87 times) and females (1.66 times) of the selected populations survived under cold shock conditions relative to their controls. After being subjected to heat shock, the selected population's egg viability and mating frequency increased by 0.30 times and 0.57 times, respectively, compared to control populations. Additionally, more selected males (0.31 times) and females (0.98 times) survived under heat shock conditions compared to the control populations. Desiccation resistance slightly increased in the females of the selected populations relative to their control, but we observed no change in the case of males. Starvation resistance decreased in males and females of the selected populations compared to their controls. Our findings suggest that the increased resistance to cold shock correlates with increased tolerance to heat stress, but this evolved resistance comes at a cost, with decreased tolerance to starvation.


Asunto(s)
Drosophila melanogaster , Inanición , Animales , Femenino , Masculino , Drosophila melanogaster/genética , Respuesta al Choque por Frío , Adaptación Fisiológica , Evolución Biológica , Reproducción , Drosophila , Frío
8.
Curr Res Insect Sci ; 2: 100027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003263

RESUMEN

In many insects, the larval environment is confined to the egg-laying site, which often leads to crowded larval conditions, exposing the developing larvae to poor resource availability and toxic metabolic wastes. Larval crowding imposes two opposing selection pressures. On one hand, due to poor nutritional resources during developmental stages, adults from the crowded larval environment have reduced investment in reproductive tissues. On the other hand, a crowded larval environment acts as a cue for future reproductive competition inducing increased investment in reproductive tissues. Both these selection pressures are likely affected by the level of crowding. The evolutionary consequence of adaptation to larval crowding environment on adult reproductive investment is bound to be a result of the interaction of these two opposing forces. In this study, we used experimentally evolved populations of Drosophila melanogaster adapted to larval crowding to investigate the effect of adaptation to larval crowding on investment in reproductive organs (testes and accessory glands) of males. Our results show that there is a strong effect of larval developmental environment on absolute sizes of testes and accessory glands. However, there was no effect of the developmental environment when testis size was scaled by body size. We also found that flies from crowded cultures had smaller accessory gland sizes relative to body size. Moreover, the sizes of the reproductive organs were not affected by the selection histories of the populations. This study highlights that adaptation to two extremely different developmental environments does not affect the patterns of reproductive investment. We discuss the possibility that differential investment in reproductive tissues could be influenced by the mating dynamics and/or investment in larval survival traits, rather than just the developmental environment of the populations.

9.
Evolution ; 76(7): 1638-1651, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35598115

RESUMEN

Male-biased operational sex ratios can increase male-male competition and can potentially select for both increased pre- and postcopulatory male success. In the present study, using populations of Drosophila melanogaster evolved under male-biased (M) or female-biased (F) sex ratios, we asked whether (a) male mating success can evolve, (b) males are better at mating females that they have coevolved with, (c) males mating success is affected by female mating status, and (d) male mating success is correlated with their courtship effort. We directly competed M and F males for mating with (a) virgin ancestral (common) females, (b) virgin females from the M and F populations, and (c) singly mated females from the M and F populations. We also assessed the courtship frequency of the males when paired with mated M or F females. Our results show that M males, evolving under an increased level of male-male competition, have higher mating success than F males irrespective of the female evolutionary history. However, the difference in mating success is more pronounced if the females had mated before. M males also have a higher courtship frequency than F males, but we did not find any correlation between mating success and courtship frequency.


Asunto(s)
Drosophila melanogaster , Reproducción , Animales , Evolución Biológica , Cortejo , Drosophila melanogaster/genética , Femenino , Masculino , Reproducción/fisiología , Razón de Masculinidad , Conducta Sexual Animal/fisiología
10.
BMC Ecol Evol ; 22(1): 77, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717176

RESUMEN

BACKGROUND: In spatially structured populations, local adaptation improves organisms' fitness in their native environment. Hosts and pathogens can rapidly adapt to their local antagonist. Since males and females can differ in their immunocompetence, the patterns of local adaptation can be different between the sexes. However, there is little information about sex differences in local adaptation in host-pathogen systems. RESULTS: In the current study, we experimentally coevolved four different replicate populations of Drosophila melanogaster (host) and Pseudomonas entomophila (pathogen) along with appropriate controls. We used the four host-pathogen coevolution populations to investigate the occurrence of local adaptation separately in males and females of the coevolving hosts. We also assessed local adaptation in pathogens. We set up a reciprocal infection experiment where we infected each of the four coevolving hosts with their local pathogen or non-local pathogens from the other three replicate populations. We found that overall, male and female hosts had better survivorship when infected with local pathogens, indicating that they were locally adapted. Interestingly, males were more susceptible to non-local pathogens compared to females. In addition, we found no fecundity cost in females infected with either local or non-local pathogens. We found no evidence of local adaptation among the pathogens. CONCLUSION: Our study showed sex-specific adaptation in the coevolving hosts where female hosts had a broader response against allopatric coevolving pathogens with no cost in fecundity. Thus, our results might suggest a novel mechanism that can maintain variation in susceptibility in spatially structured populations.


Asunto(s)
Adaptación Fisiológica , Drosophila melanogaster , Aclimatación , Animales , Drosophila melanogaster/fisiología , Femenino , Masculino , Pseudomonas
11.
BMC Ecol Evol ; 22(1): 38, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346023

RESUMEN

BACKGROUND: Divergence in the evolutionary interests of males and females leads to sexual conflict. Traditionally, sexual conflict has been classified into two types: inter-locus sexual conflict (IeSC) and intra-locus sexual conflict (IaSC). IeSC is modeled as a conflict over outcomes of intersexual reproductive interactions mediated by loci that are sex-limited in their effects. IaSC is thought to be a product of selection acting in opposite directions in males and females on traits with a common underlying genetic basis. While in their canonical formalisms IaSC and IeSC are mutually exclusive, there is growing support for the idea that the two may interact. Empirical evidence for such interactions, however, is limited. RESULTS: Here, we investigated the interaction between IeSC and IaSC in Drosophila melanogaster. Using hemiclonal analysis, we sampled 39 hemigenomes from a laboratory-adapted population of D. melanogaster. We measured the contribution of each hemigenome to adult male and female fitness at three different intensities of IeSC, obtained by varying the operational sex ratio. Subsequently, we estimated the intensity of IaSC at each sex ratio by calculating the intersexual genetic correlation (rw,g,mf) for fitness and the proportion of sexually antagonistic fitness-variation. We found that the intersexual genetic correlation for fitness was positive at all three sex ratios. Additionally, at male biased and equal sex ratios the rw,g,mf was higher, and the proportion of sexually antagonistic fitness variation lower, relative to the female biased sex ratio, although this trend was not statistically significant. CONCLUSION: Our results indicate a statistically non-significant trend suggesting that increasing the strength of IeSC ameliorates IaSC in the population.


Asunto(s)
Drosophila melanogaster , Reproducción , Adaptación Fisiológica/genética , Animales , Evolución Biológica , Drosophila melanogaster/genética , Femenino , Masculino , Fenotipo
12.
BMC Ecol Evol ; 21(1): 219, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872492

RESUMEN

BACKGROUND: In insect species like Drosophila melanogaster, evolution of increased resistance or evolution of particular traits under specific environmental conditions can lead to energy trade-offs with other crucial life-history traits. Adaptation to cold stress can, in principle, involve modification of reproductive traits and physiological responses. Reproductive traits carry a substantial cost; and therefore, the evolution of reproductive traits in response to cold stress could potentially lead to trade-offs with other life-history traits. We have successfully selected replicate populations of Drosophila melanogaster for increased resistance to cold shock for over 33 generations. In these populations, the ability to recover from cold shock, mate, and lay fertile eggs 24 h post cold shock is under selection. These populations have evolved a suite of reproductive traits including increased egg viability, male mating ability, and siring ability post cold shock. These populations also show elevated mating rate both with and without cold shock. In the present study, we quantified a suite of life-history related traits in these populations to assess if evolution of cold shock resistance in these populations comes at a cost of other life-history traits. RESULTS: To assess life-history cost, we measured egg viability, mating frequency, longevity, lifetime fecundity, adult mortality, larva to adult development time, larvae to adults survival, and body weight in the cold shock selected populations and their controls under two treatments (a) post cold chock and (b) without cold shock. Twenty-four hours post cold shock, the selected population had significantly higher egg viability and mating frequency compared to control populations indicating that they have higher cold shock resistance. Selected populations had significantly longer pre-adult development time compared to their control populations. Females from the selected populations had higher body weight compared to their control populations. However, we did not find any significant difference between the selected and control populations in longevity, lifetime fecundity, adult mortality, larvae to adults survival, and male body weight under the cold chock or no cold shock treatments. CONCLUSIONS: These findings suggest that cold shock selected populations have evolved higher mating frequency and egg viability. However, there is no apparent life-history associated cost with the evolution of egg viability and reproductive performances under the cold stress condition.


Asunto(s)
Respuesta al Choque por Frío , Drosophila melanogaster , Animales , Evolución Biológica , Drosophila melanogaster/genética , Femenino , Fertilidad , Masculino , Reproducción
13.
Ecol Evol ; 11(14): 9563-9574, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34306643

RESUMEN

Multiple laboratory studies have evolved hosts against a nonevolving pathogen to address questions about evolution of immune responses. However, an ecologically more relevant scenario is one where hosts and pathogens can coevolve. Such coevolution between the antagonists, depending on the mutual selection pressure and additive variance in the respective populations, can potentially lead to a different pattern of evolution in the hosts compared to a situation where the host evolves against a nonevolving pathogen. In the present study, we used Drosophila melanogaster as the host and Pseudomonas entomophila as the pathogen. We let the host populations either evolve against a nonevolving pathogen or coevolve with the same pathogen. We found that the coevolving hosts on average evolved higher survivorship against the coevolving pathogen and ancestral (nonevolving) pathogen relative to the hosts evolving against a nonevolving pathogen. The coevolving pathogens evolved greater ability to induce host mortality even in nonlocal (novel) hosts compared to infection by an ancestral (nonevolving) pathogen. Thus, our results clearly show that the evolved traits in the host and the pathogen under coevolution can be different from one-sided adaptation. In addition, our results also show that the coevolving host-pathogen interactions can involve certain general mechanisms in the pathogen, leading to increased mortality induction in nonlocal or novel hosts.

14.
Evolution ; 75(2): 414-426, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33319380

RESUMEN

Post-copulatory sexual selection (PSS) is an important selective force that determines fitness in polyandrous species. PSS can be intense in some cases and can drive the evolution of remarkable ejaculate properties. In males, investment in ejaculate plays an important role in the outcome of PSS. Thus, males are expected to adaptively tailor their ejaculate according to the perceived competition in their vicinity. Plastic responses in ejaculate investment to variation in intrasexual competition are disparate and widespread in males. We investigated the evolution of plasticity in reproductive traits using Drosophila melanogaster populations evolving for more than 150 generations under male- or female-biased sex ratios. When exposed to different numbers of competitors early in their life, males from these two regimes responded differently in terms of their copulation duration and sperm competitive ability. In addition, the effect of this early life experience wore off at different rates in males of male-biased and female-biased regimes with increasing time from the removal of competitive cues. Furthermore, our study finds that males change their reproductive strategies depending upon the identity of rival males. Together, our results provide evidence of the evolution of male reproductive investment that depends on socio-sexual cues experienced early in life.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Drosophila melanogaster , Conducta Sexual Animal , Selección Sexual , Animales , Femenino , Masculino , Reproducción , Razón de Masculinidad
15.
Evol Lett ; 5(6): 657-671, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34919096

RESUMEN

Males and females are subjected to distinct kinds of selection pressures, often leading to the evolution of sex-specific genetic architecture, an example being sex-specific dominance. Sex-specific dominance reversals (SSDRs), where alleles at sexually antagonistic loci are at least partially dominant in the sex they benefit, have been documented in Atlantic salmon, rainbow trout, and seed beetles. Another interesting feature of many sexually reproducing organisms is the asymmetric inheritance pattern of X chromosomes, which often leads to distinct evolutionary outcomes on X chromosomes compared to autosomes. Examples include the higher efficacy of sexually concordant selection on X chromosomes, and X chromosomes being more conducive to the maintenance of sexually antagonistic polymorphisms under certain conditions. Immunocompetence is a trait that has been extensively investigated for sexual dimorphism with growing evidence for sex-specific or sexually antagonistic variation. X chromosomes have been shown to harbor substantial immunity-related genetic variation in the fruit fly, Drosophila melanogaster. Here, using interpopulation crosses and cytogenetic cloning, we investigated sex-specific dominance and the role of the X chromosome in improved postinfection survivorship of laboratory populations of D. melanogaster selected against pathogenic challenge by Pseudomonas entomophila. We could not detect any contribution of the X chromosome to the evolved immunocompetence of our selected populations, as well as to within-population variation in immunocompetence. However, we found strong evidence of sex-specific dominance related to surviving bacterial infection. Our results indicate that alleles that confer a survival advantage to the selected populations are, on average, partially dominant in females but partially recessive in males. This could also imply an SSDR for overall fitness, given the putative evidence for sexually antagonistic selection affecting immunocompetence in Drosophila melanogaster. We also highlight sex-specific dominance as a potential mechanism of sex differences in immunocompetence, with population-level sex differences primarily driven by sex differences in heterozygotes.

16.
J Insect Physiol ; 98: 67-73, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27913151

RESUMEN

Sperm competition theory predicts that with increase in sperm competition, males either invest more in reproductive organ(s) and/or improve ejaculate investment. We test this idea using experimental evolution in Drosophila melanogaster. We maintained replicate populations of Drosophila melanogaster under male (M) and female (F) biased sex ratio regimes for more than a hundred generations with the result that males from the M regime evolved higher sperm competitive abilities relative to males from the F regime. In the present study, we measured the testes and the accessory gland size of virgin and singly mated males from the M and F regimes. The M and F males do not differ in either testis or accessory gland size. Additionally, ejaculate investment is not different in the M and F males, as measured by reduction in testis and accessory gland sizes. Thus, contrary to theoretical prediction and evidence from other species, we found that evolved differences in sperm competitive ability are not necessarily due to evolution of testis/accessory gland size or strategic ejaculate investment in these populations.


Asunto(s)
Evolución Biológica , Drosophila melanogaster/fisiología , Preferencia en el Apareamiento Animal , Espermatozoides/fisiología , Animales , Femenino , Genitales Masculinos/anatomía & histología , Masculino , Razón de Masculinidad , Testículo/anatomía & histología
17.
Sci Rep ; 7(1): 3330, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28611437

RESUMEN

Promiscuity can drive the evolution of sexual conflict before and after mating occurs. Post mating, the male ejaculate can selfishly manipulate female physiology, leading to a chemical arms race between the sexes. Theory suggests that drift and sexually antagonistic coevolution can cause allopatric populations to evolve different chemical interactions between the sexes, thereby leading to postmating reproductive barriers and speciation. There is, however, little empirical evidence supporting this form of speciation. We tested this theory by creating an experimental evolutionary model of Drosophila melanogaster populations undergoing different levels of interlocus sexual conflict. We found that allopatric populations under elevated sexual conflict show assortative mating, indicating premating reproductive isolation. Further, these allopatric populations also show reduced copulation duration and sperm defense ability when mating happens between individuals across populations compared to that within the same population, indicating postmating prezygotic isolation. Sexual conflict can cause reproductive isolation in allopatric populations through the coevolution of chemical (postmating prezygotic) as well as behavioural (premating) interactions between the sexes. Thus, to our knowledge, we provide the first comprehensive evidence of postmating (as well as premating) reproductive isolation due to sexual conflict.


Asunto(s)
Coevolución Biológica , Aislamiento Reproductivo , Conducta Sexual Animal , Animales , Drosophila melanogaster/genética , Femenino , Masculino , Modelos Genéticos , Reproducción
18.
J Insect Physiol ; 91-92: 26-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27317621

RESUMEN

Exposure to low temperatures reduces gamete viability and fecundity in females of insect species like Drosophila. Hence, adaptation to cold stress can in principle involve modifications in reproductive traits in females. Studies on resistance to cold stress have mostly addressed the evolution of adult survivorship post cold shock. Very few studies have addressed the evolution of reproductive traits in females in response to cold stress. We have successfully selected replicate populations of Drosophila melanogaster for resistance to cold shock. After 50 generations of selection, we investigated pre- and post-copulatory traits i.e. mating latency, copulation duration, mating frequency and progeny production in female flies exposed to cold shock or control conditions. Post cold shock, females from the selected populations were better at recovery in terms of mating latency, mating success, and progeny production relative to females from the control populations. Performance of the two types of females was not different under control conditions. These findings clearly indicate that adaptation to cold stress involves rapid modification of the reproductive traits.


Asunto(s)
Frío/efectos adversos , Copulación , Drosophila melanogaster/fisiología , Selección Genética , Animales , Evolución Biológica , Drosophila melanogaster/genética , Femenino , Estrés Fisiológico
19.
PLoS One ; 11(4): e0153629, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27093599

RESUMEN

BACKGROUND: In Drosophila melanogaster the fitness of males depends on a broad array of reproductive traits classified as pre- and post-copulatory traits. Exposure to cold stress, can reduce sperm number, male mating ability and courtship behavior. Therefore, it is expected that the adaptation to cold stress will involve changes in pre- and post-copulatory traits. Such evolution of reproductive traits in response to cold stress is not well studied. METHODS: We selected replicate populations of D. melanogaster for resistance to cold shock. Over 37-46 generations of selection, we investigated pre- and post-copulatory traits such as mating latency, copulation duration, mating frequency, male fertility, fitness (progeny production) and sperm competitive ability in male flies subjected to cold shock and those not subjected to cold shock. RESULTS: We found that post cold shock, the males from the selected populations had a significantly lower mating latency along with, higher mating frequency, fertility, sperm competitive ability and number of progeny relative to the control populations. CONCLUSION: While most studies of experimental evolution of cold stress resistance have documented the evolution of survivorship in response to selection, our study clearly shows that adaptation to cold stress involves rapid changes in the pre- and post-copulatory traits. Additionally, improved performances under stressful conditions need not necessarily trade-off with performance under benign conditions.


Asunto(s)
Adaptación Fisiológica/fisiología , Copulación/fisiología , Drosophila melanogaster/fisiología , Animales , Evolución Biológica , Frío , Fertilidad/fisiología , Masculino , Fenotipo , Reproducción/fisiología , Espermatozoides/fisiología
20.
J Insect Physiol ; 59(10): 1017-23, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23932964

RESUMEN

Given the non-trivial cost of reproduction for males and substantial variation in female quality, males have been predicted to show mating bias as an evolved strategy. Using a large outbred population of Drosophila melanogaster, we test this prediction and show that males may adaptively bias their mating effort in response to the infection status of females. Given a simultaneous choice between females infected with pathogenic bacteria and sham infected females, males preferentially mated with the latter, who had a higher reproductive output compared to infected females. This may provide evidence for pre-copulatory male mate choice. Assessment of the reproductive behaviour ensured that the observed pattern of mating bias was not due to differences in receptivity between females infected with pathogenic bacteria and sham infected females. Further, there was no evidence for post-copulatory male mate choice measured in terms of copulation duration.


Asunto(s)
Copulación , Drosophila melanogaster/microbiología , Interacciones Huésped-Patógeno , Preferencia en el Apareamiento Animal , Serratia marcescens/fisiología , Adaptación Biológica , Animales , Femenino , Masculino , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA