Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Ther ; 31(3): 676-685, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36518079

RESUMEN

A chromosome 14 inversion was found in a patient who developed bone marrow aplasia following treatment with allogeneic chimeric antigen receptor (CAR) Tcells containing gene edits made with transcription activator-like effector nucleases (TALEN). TALEN editing sites were not involved at either breakpoint. Recombination signal sequences (RSSs) were found suggesting recombination-activating gene (RAG)-mediated activity. The inversion represented a dominant clone detected in the context of decreasing absolute CAR Tcell and overall lymphocyte counts. The inversion was not associated with clinical consequences and wasnot detected in the drug product administered to this patient or in any drug product used in this or other trials using the same manufacturing processes. Neither was the inversion detected in this patient at earlier time points or in any other patient enrolled in this or other trials treated with this or other product lots. This case illustrates that spontaneous, possibly RAG-mediated, recombination events unrelated to gene editing can occur in adoptive cell therapy studies, emphasizes the need for ruling out off-target gene editing sites, and illustrates that other processes, such as spontaneous V(D)J recombination, can lead to chromosomal alterations in infused cells independent of gene editing.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Receptores Quiméricos de Antígenos , Humanos , Edición Génica , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Linfocitos T , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/efectos adversos
2.
J Transl Med ; 13: 98, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25889765

RESUMEN

BACKGROUND: Dormant leukemia stem cells (LSC) promote therapeutic resistance and leukemic progression as a result of unbridled activation of stem cell gene expression programs. Thus, we hypothesized that 1) deregulation of the hedgehog (Hh) stem cell self-renewal and cell cycle regulatory pathway would promote dormant human LSC generation and 2) that PF-04449913, a clinical antagonist of the GLI2 transcriptional activator, smoothened (SMO), would enhance dormant human LSC eradication. METHODS: To test these postulates, whole transcriptome RNA sequencing (RNA-seq), microarray, qRT-PCR, stromal co-culture, confocal fluorescence microscopic, nanoproteomic, serial transplantation and cell cycle analyses were performed on FACS purified normal, chronic phase (CP) chronic myeloid leukemia (CML), blast crisis (BC) phase CML progenitors with or without PF-04449913 treatment. RESULTS: Notably, RNA-seq analyses revealed that Hh pathway and cell cycle regulatory gene overexpression correlated with leukemic progression. While lentivirally enforced GLI2 expression enhanced leukemic progenitor dormancy in stromal co-cultures, this was not observed with a mutant GLI2 lacking a transactivation domain, suggesting that GLI2 expression prevented cell cycle transit. Selective SMO inhibition with PF-04449913 in humanized stromal co-cultures and LSC xenografts reduced downstream GLI2 protein and cell cycle regulatory gene expression. Moreover, SMO inhibition enhanced cell cycle transit and sensitized BC LSC to tyrosine kinase inhibition in vivo at doses that spare normal HSC. CONCLUSION: In summary, while GLI2, forms part of a core HH pathway transcriptional regulatory network that promotes human myeloid leukemic progression and dormant LSC generation, selective inhibition with PF-04449913 reduces the dormant LSC burden thereby providing a strong rationale for clinical trials predicated on SMO inhibition in combination with TKIs or chemotherapeutic agents with the ultimate aim of obviating leukemic therapeutic resistance, persistence and progression.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Leucemia/patología , Células Madre Neoplásicas/patología , Proteínas Nucleares/antagonistas & inhibidores , Animales , Secuencia de Bases , Técnicas de Cocultivo , Cartilla de ADN , Sangre Fetal/citología , Proteínas Hedgehog/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma , Proteína Gli2 con Dedos de Zinc
3.
Virchows Arch ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388965

RESUMEN

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. While induction chemotherapy leads to remission in most patients, a significant number will experience relapse. Therefore, there is a need for novel therapies that can improve remission rates in patients with relapsed and refractory AML. CD70 is the natural ligand for CD27 (a member of the TNF superfamily) and appears to be a promising therapeutic target. Consequently, there is considerable interest in developing chimeric antigen receptor (CAR) T-cell therapy products that can specifically target CD70 in various neoplasms, including AML. In this study, we employed routine diagnostic techniques, such as immunohistochemistry and flow cytometry, to investigate the expression of CD70 in bone marrow samples from treatment-naïve and relapsed AML patients after hypomethylating agents (HMA). Also, we evaluated the impact of HMA on CD70 expression and examined CD70 expression in various leukemic cell subsets and normal hematopoietic progenitors.

4.
Blood ; 116(17): 3321-30, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-20628147

RESUMEN

Embryonic hematopoiesis starts via the generation of primitive red blood cells (RBCs) that satisfy the embryo's immediate oxygen needs. Although primitive RBCs were thought to retain their nuclei, recent studies have shown that primitive RBCs in mice enucleate in the fetal liver. It has been unknown whether human primitive RBCs enucleate, and what hematopoietic site might support this process. Our data indicate that the terminal maturation and enucleation of human primitive RBCs occurs in first trimester placental villi. Extravascular ζ-globin(+) primitive erythroid cells were found in placental villi between 5-7 weeks of development, at which time the frequency of enucleated RBCs was higher in the villous stroma than in circulation. RBC enucleation was further evidenced by the presence of primitive reticulocytes and pyrenocytes (ejected RBC nuclei) in the placenta. Extravascular RBCs were found to associate with placental macrophages, which contained ingested nuclei. Clonogenic macrophage progenitors of fetal origin were present in the chorionic plate of the placenta before the onset of fetoplacental circulation, after which macrophages had migrated to the villi. These findings indicate that placental macrophages may assist the enucleation process of primitive RBCs in placental villi, implying an unexpectedly broad role for the placenta in embryonic hematopoiesis.


Asunto(s)
Células Eritroides/citología , Eritropoyesis , Placenta/citología , Primer Trimestre del Embarazo , Vellosidades Coriónicas/ultraestructura , Femenino , Feto/irrigación sanguínea , Feto/citología , Humanos , Macrófagos/citología , Placenta/irrigación sanguínea , Placenta/ultraestructura , Embarazo
5.
Genetics ; 177(2): 689-97, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17720911

RESUMEN

Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes.


Asunto(s)
Drosophila melanogaster/genética , Ojo , Genes Letales/genética , Mutación , Cromosoma X , Animales , Células Clonales , Drosophila melanogaster/fisiología , Ojo/crecimiento & desarrollo , Genes Esenciales , Genes de Insecto , Genoma de los Insectos
6.
Cell Stem Cell ; 16(1): 80-7, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25465114

RESUMEN

Advances in pluripotent stem cell and reprogramming technologies have given us the hope of generating hematopoietic stem cells (HSCs) in culture. To succeed, greater understanding of the self-renewing HSC during human development is required. We discovered that the glycophosphatidylinositol-anchored surface protein GPI-80 defines a subpopulation of human fetal liver hematopoietic stem/progenitor cells (HSPCs) with self-renewal ability. CD34(+)CD38(lo/-)CD90(+)GPI-80(+) HSPCs were the sole population that maintained proliferative potential and an undifferentiated state in stroma coculture and engrafted in immunodeficient mice. GPI-80 expression also enabled tracking of HSPCs once they emerged from endothelium and migrated between human fetal hematopoietic niches. GPI-80 colocalized on the surface of HSPCs with Integrin alpha-M (ITGAM), which in leukocytes cooperates with GPI-80 to support migration. Knockdown of GPI-80 or ITGAM was sufficient to compromise HSPC expansion in culture and engraftment in vivo. These findings indicate that human fetal HSCs employ mechanisms used in leukocyte adhesion and migration to mediate HSC self-renewal.


Asunto(s)
Amidohidrolasas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Desarrollo Embrionario , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Antígeno CD11b/metabolismo , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Feto/citología , Citometría de Flujo , Proteínas Ligadas a GPI/metabolismo , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunofenotipificación , Hígado/citología , Hígado/embriología
7.
PLoS One ; 8(1): e53912, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342037

RESUMEN

Lack of HLA-matched hematopoietic stem cells (HSC) limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC) stroma that protects human hematopoietic stem/progenitor cells (HSPC) from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+) characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.


Asunto(s)
Diferenciación Celular , Técnicas de Cocultivo/métodos , Células Madre Hematopoyéticas/citología , Antígenos CD/metabolismo , Apoptosis , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Linaje de la Célula , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Perfilación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Humanos , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proteínas Proto-Oncogénicas/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA