Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(48): 17206-11, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25404328

RESUMEN

Expanding the genetic code is an important aim of synthetic biology, but some organisms developed naturally expanded genetic codes long ago over the course of evolution. Less than 1% of all sequenced genomes encode an operon that reassigns the stop codon UAG to pyrrolysine (Pyl), a genetic code variant that results from the biosynthesis of Pyl-tRNA(Pyl). To understand the selective advantage of genetically encoding more than 20 amino acids, we constructed a markerless tRNA(Pyl) deletion strain of Methanosarcina acetivorans (ΔpylT) that cannot decode UAG as Pyl or grow on trimethylamine. Phenotypic defects in the ΔpylT strain were evident in minimal medium containing methanol. Proteomic analyses of wild type (WT) M. acetivorans and ΔpylT cells identified 841 proteins from >7,000 significant peptides detected by MS/MS. Protein production from UAG-containing mRNAs was verified for 19 proteins. Translation of UAG codons was verified by MS/MS for eight proteins, including identification of a Pyl residue in PylB, which catalyzes the first step of Pyl biosynthesis. Deletion of tRNA(Pyl) globally altered the proteome, leading to >300 differentially abundant proteins. Reduction of the genetic code from 21 to 20 amino acids led to significant down-regulation in translation initiation factors, amino acid metabolism, and methanogenesis from methanol, which was offset by a compensatory (100-fold) up-regulation in dimethyl sulfide metabolic enzymes. The data show how a natural proteome adapts to genetic code reduction and indicate that the selective value of an expanded genetic code is related to carbon source range and metabolic efficiency.


Asunto(s)
Proteínas Arqueales/metabolismo , Código Genético , Proteoma/metabolismo , Proteómica/métodos , Adaptación Fisiológica/genética , Proteínas Arqueales/genética , Cromatografía Liquida , Codón de Terminación/genética , Electroforesis en Gel Bidimensional , Lisina/análogos & derivados , Lisina/genética , Lisina/metabolismo , Methanosarcina/genética , Methanosarcina/crecimiento & desarrollo , Methanosarcina/metabolismo , Metilaminas/metabolismo , Mutación , Biosíntesis de Proteínas/genética , Proteoma/genética , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Espectrometría de Masas en Tándem
2.
Proc Natl Acad Sci U S A ; 109(51): 21070-5, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23185002

RESUMEN

Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNA(Pyl) is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ~5% of ORFs, whereas Pyl-decoding bacteria (~20% of ORFs contain in-frame TAGs) regulate Pyl-tRNA(Pyl) formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Bacterias/genética , Carbono/química , Código Genético , Aminoacil-ARNt Sintetasas/genética , Codón , Codón de Terminación/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Modelos Genéticos , Sistemas de Lectura Abierta , Filogenia , Biosíntesis de Proteínas , Ácido Pirúvico/metabolismo
3.
Chembiochem ; 14(15): 1967-72, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24000185

RESUMEN

Sense codon recoding is the basis for genetic code expansion with more than two different noncanonical amino acids. It requires an unused (or rarely used) codon, and an orthogonal tRNA synthetase:tRNA pair with the complementary anticodon. The Mycoplasma capricolum genome contains just six CGG arginine codons, without a dedicated tRNA(Arg). We wanted to reassign this codon to pyrrolysine by providing M. capricolum with pyrrolysyl-tRNA synthetase, a synthetic tRNA with a CCG anticodon (tRNA(Pyl)(CCG)), and the genes for pyrrolysine biosynthesis. Here we show that tRNA(Pyl)(CCG) is efficiently recognized by the endogenous arginyl-tRNA synthetase, presumably at the anticodon. Mass spectrometry revealed that in the presence of tRNA(Pyl)(CCG), CGG codons are translated as arginine. This result is not unexpected as most tRNA synthetases use the anticodon as a recognition element. The data suggest that tRNA misidentification by endogenous aminoacyl-tRNA synthetases needs to be overcome for sense codon recoding.


Asunto(s)
Codón/genética , ARN Bacteriano/genética , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/metabolismo , Genoma Bacteriano/genética , Datos de Secuencia Molecular , Mycoplasma capricolum/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , beta-Galactosidasa/química , beta-Galactosidasa/genética
4.
Appl Environ Microbiol ; 77(11): 3853-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21478312

RESUMEN

Desulfitobacterium spp. are ubiquitous organisms with a broad metabolic versatility, and some isolates have the ability to use tetrachloroethene (PCE) as terminal electron acceptor. In order to identify proteins involved in this organohalide respiration process, a comparative proteomic analysis was performed. Soluble and membrane-associated proteins obtained from cells of Desulfitobacterium hafniense strain TCE1 that were growing on different combinations of the electron donors lactate and hydrogen and the electron acceptors PCE and fumarate were analyzed. Among proteins increasingly expressed in the presence of PCE compared to fumarate as electron acceptor, a total of 57 proteins were identified by mass spectrometry analysis, revealing proteins involved in stress response and associated regulation pathways, such as PspA, GroEL, and CodY, and also proteins potentially participating in carbon and energy metabolism, such as proteins of the Wood-Ljungdahl pathway and electron transfer flavoproteins. These proteomic results suggest that D. hafniense strain TCE1 adapts its physiology to face the relative unfavorable growth conditions during an apparent opportunistic organohalide respiration.


Asunto(s)
Adaptación Fisiológica , Desulfitobacterium/fisiología , Tetracloroetileno/metabolismo , Proteínas Bacterianas/análisis , Carbono/metabolismo , Desulfitobacterium/química , Desulfitobacterium/metabolismo , Electroforesis en Gel Bidimensional , Metabolismo Energético , Fumaratos/metabolismo , Hidrógeno/metabolismo , Ácido Láctico/metabolismo , Espectrometría de Masas , Redes y Vías Metabólicas/genética , Oxidación-Reducción , Proteoma/análisis
6.
FEBS Lett ; 589(17): 2194-9, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26160755

RESUMEN

Incorporation of selenocysteine (Sec) in bacteria requires a UGA codon that is reassigned to Sec by the Sec-specific elongation factor SelB and a conserved mRNA motif (SECIS element). These requirements severely restrict the engineering of selenoproteins. Earlier, a synthetic tRNASec was reported that allowed canonical Sec incorporation by EF-Tu; however, serine misincorporation limited its scope. We report a superior tRNASec variant (tRNAUTuX) that facilitates EF-Tu dependent stoichiometric Sec insertion in response to UAG both in vivo in Escherichia coli and in vitro in a cellfree protein synthesis system. We also demonstrate recoding of several sense codons in a SelB supplemented cell-free system. These advances in Sec incorporation will aid rational design and directed evolution of selenoproteins.


Asunto(s)
Factor Tu de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico/metabolismo , Selenocisteína/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Codón de Terminación/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
7.
FEBS J ; 279(15): 2754-67, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22686689

RESUMEN

The rhodanese protein domain is common throughout all kingdoms of life and is characterized by an active site cysteine residue that is able to bind sulfane sulfur and catalyse sulfur transfer. No unique function has been attributed to rhodanese-domain-containing proteins, most probably because of their diversity at both the level of sequence and protein domain architecture. In this study, we investigated the biochemical properties of an unusual rhodanese protein, PhsE, from Desulfitobacterium hafniense strain TCE1 which we have previously shown to be massively expressed under anaerobic respiration with tetrachloroethene. The peculiarity of the PhsE protein is its domain architecture which is constituted of two rhodanese domains each with an active site cysteine. The N-terminal rhodanese domain is preceded by a lipoprotein signal peptide anchoring PhsE on the outside of the cytoplasmic membrane. In vitro sulfur-transferase activity of recombinant PhsE variants was measured for both domains contrasting with other tandem-domain rhodaneses in which usually only the C-terminal domain has been found to be active. The genetic context of phsE shows that it is part of a six-gene operon displaying homology with gene clusters encoding respiratory molybdoenzymes of the PhsA/PsrA family, possibly involved in the reduction of sulfur compounds. Our data suggest, however, that the presence of sulfide in the medium is responsible for the high expression of PhsE in Desulfitobacterium, where it could play a role in the sulfur homeostasis of the cell.


Asunto(s)
Proteínas Bacterianas/química , Desulfitobacterium/enzimología , Tiosulfato Azufretransferasa/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico/genética , Desulfitobacterium/genética , Genes Bacterianos , Datos de Secuencia Molecular , Familia de Multigenes , Operón , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Azufre/metabolismo , Tiosulfato Azufretransferasa/genética , Tiosulfato Azufretransferasa/metabolismo
8.
FEBS Lett ; 586(21): 3931-7, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23036644

RESUMEN

Over 300 amino acids are found in proteins in nature, yet typically only 20 are genetically encoded. Reassigning stop codons and use of quadruplet codons emerged as the main avenues for genetically encoding non-canonical amino acids (NCAAs). Canonical aminoacyl-tRNAs with near-cognate anticodons also read these codons to some extent. This background suppression leads to 'statistical protein' that contains some natural amino acid(s) at a site intended for NCAA. We characterize near-cognate suppression of amber, opal and a quadruplet codon in common Escherichia coli laboratory strains and find that the PylRS/tRNA(Pyl) orthogonal pair cannot completely outcompete contamination by natural amino acids.


Asunto(s)
Codón , Escherichia coli/genética , Código Genético , Lisina/análogos & derivados , Aminoacil-ARN de Transferencia/genética , Anticodón , Lisina/genética , Biosíntesis de Proteínas , Espectrometría de Masa por Ionización de Electrospray , Supresión Genética
9.
Res Microbiol ; 160(10): 829-37, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19786096

RESUMEN

Many hydrocarbon-degrading bacteria form biofilms at the hydrocarbon-water interface to overcome the weak accessibility of these poorly water-soluble substrates. In order to gain insight into the cellular functions involved, we undertook a proteomic analysis of Marinobacter hydrocarbonoclasticus SP17 biofilm developing at the hexadecane-water interface. Biofilm formation on hexadecane led to a global change in cell physiology involving modulation of the expression of 576 out of 1144 detected proteins when compared with planktonic cells growing on acetate. Biofilm cells overproduced a protein encoded by MARHY0478 that contains a conserved domain belonging to the family of the outer membrane transporters of hydrophobic compounds. Homologs of MARHY0478 were exclusively found in marine bacteria degrading alkanes or possessing alkane degradation genes, and hence presumably constitute a family of alkane transporters specific to marine bacteria. Interestingly, we also found that sessile cells growing on hexadecane overexpressed type VI secretion system components. This secretion system has been identified as a key factor in virulence and in symbiotic interaction with host organisms. This observation is the first experimental evidence of the contribution of a type VI secretion system to environmental adaptation, and raises the intriguing question about the role of this secretion machine in alkane assimilation.


Asunto(s)
Alcanos/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Marinobacter/crecimiento & desarrollo , Proteoma/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Transporte Biológico , Marinobacter/genética , Marinobacter/metabolismo , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA