Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Mol Cell ; 83(7): 1030-1042, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977413

RESUMEN

It is common to think about and depict biological processes as being governed by fixed pathways with specific components interconnected by concrete positive and negative interactions. However, these models may fail to effectively capture the regulation of cell biological processes that are driven by chemical mechanisms that do not rely absolutely on specific metabolites or proteins. Here, we discuss how ferroptosis, a non-apoptotic cell death mechanism with emerging links to disease, may be best understood as a highly flexible mechanism that can be executed and regulated by many functionally related metabolites and proteins. The inherent plasticity of ferroptosis has implications for how to define and study this mechanism in healthy and diseased cells and organisms.


Asunto(s)
Ferroptosis , Ferroptosis/genética , Muerte Celular/fisiología , Hierro/metabolismo , Peroxidación de Lípido , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
2.
Nature ; 626(7998): 401-410, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297129

RESUMEN

Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.


Asunto(s)
Linfoma de Burkitt , Deshidrocolesteroles , Ferroptosis , Neuroblastoma , Animales , Humanos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Supervivencia Celular , Deshidrocolesteroles/metabolismo , Peroxidación de Lípido , Trasplante de Neoplasias , Neuroblastoma/metabolismo , Neuroblastoma/patología , Oxidación-Reducción , Fenotipo , Reproducibilidad de los Resultados
3.
Nature ; 608(7924): 778-783, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922516

RESUMEN

Ferroptosis, a non-apoptotic form of cell death marked by iron-dependent lipid peroxidation1, has a key role in organ injury, degenerative disease and vulnerability of therapy-resistant cancers2. Although substantial progress has been made in understanding the molecular processes relevant to ferroptosis, additional cell-extrinsic and cell-intrinsic processes that determine cell sensitivity toward ferroptosis remain unknown. Here we show that the fully reduced forms of vitamin K-a group of naphthoquinones that includes menaquinone and phylloquinone3-confer a strong anti-ferroptotic function, in addition to the conventional function linked to blood clotting by acting as a cofactor for γ-glutamyl carboxylase. Ferroptosis suppressor protein 1 (FSP1), a NAD(P)H-ubiquinone reductase and the second mainstay of ferroptosis control after glutathione peroxidase-44,5, was found to efficiently reduce vitamin K to its hydroquinone, a potent radical-trapping antioxidant and inhibitor of (phospho)lipid peroxidation. The FSP1-mediated reduction of vitamin K was also responsible for the antidotal effect of vitamin K against warfarin poisoning. It follows that FSP1 is the enzyme mediating warfarin-resistant vitamin K reduction in the canonical vitamin K cycle6. The FSP1-dependent non-canonical vitamin K cycle can act to protect cells against detrimental lipid peroxidation and ferroptosis.


Asunto(s)
Ferroptosis , Vitamina K , Antídotos/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ligasas de Carbono-Carbono/metabolismo , Coenzimas/metabolismo , Ferroptosis/efectos de los fármacos , Hidroquinonas/metabolismo , Hidroquinonas/farmacología , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Proteína de Unión al Calcio S100A4/metabolismo , Vitamina K/metabolismo , Vitamina K/farmacología , Warfarina/efectos adversos
4.
Proc Natl Acad Sci U S A ; 120(21): e2300320120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186845

RESUMEN

Iridoviridae, such as the lymphocystis disease virus-1 (LCDV-1) and other viruses, encode viral insulin-like peptides (VILPs) which are capable of triggering insulin receptors (IRs) and insulin-like growth factor receptors. The homology of VILPs includes highly conserved disulfide bridges. However, the binding affinities to IRs were reported to be 200- to 500-fold less effective compared to the endogenous ligands. We therefore speculated that these peptides also have noninsulin functions. Here, we report that the LCDV-1 VILP can function as a potent and highly specific inhibitor of ferroptosis. Induction of cell death by the ferroptosis inducers erastin, RSL3, FIN56, and FINO2 and nonferroptotic necrosis produced by the thioredoxin-reductase inhibitor ferroptocide were potently prevented by LCDV-1, while human insulin had no effect. Fas-induced apoptosis, necroptosis, mitotane-induced cell death and growth hormone-releasing hormone antagonist-induced necrosis were unaffected, suggesting the specificity to ferroptosis inhibition by the LCDV-1 VILP. Mechanistically, we identified the viral C-peptide to be required for inhibition of lipid peroxidation and ferroptosis inhibition, while the human C-peptide exhibited no antiferroptotic properties. In addition, the deletion of the viral C-peptide abolishes radical trapping activity in cell-free systems. We conclude that iridoviridae, through the expression of insulin-like viral peptides, are capable of preventing ferroptosis. In analogy to the viral mitochondrial inhibitor of apoptosis and the viral inhibitor of RIP activation (vIRA) that prevents necroptosis, we rename the LCDV-1 VILP a viral peptide inhibitor of ferroptosis-1. Finally, our findings indicate that ferroptosis may function as a viral defense mechanism in lower organisms.


Asunto(s)
Apoptosis , Insulina , Humanos , Péptido C , Necrosis , Muerte Celular
5.
Nature ; 575(7784): 693-698, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31634899

RESUMEN

Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids1,2. To date, ferroptosis has been thought to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4)3,4 and radical-trapping antioxidants5,6. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis7 is crucial to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer. Although metabolic constraints8 and phospholipid composition9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been identified that account for the resistance of cells to ferroptosis. Here we used an expression cloning approach to identify genes in human cancer cells that are able to complement the loss of GPX4. We found that the flavoprotein apoptosis-inducing factor mitochondria-associated 2 (AIFM2) is a previously unrecognized anti-ferroptotic gene. AIFM2, which we renamed ferroptosis suppressor protein 1 (FSP1) and which was initially described as a pro-apoptotic gene11, confers protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that the suppression of ferroptosis by FSP1 is mediated by ubiquinone (also known as coenzyme Q10, CoQ10): the reduced form, ubiquinol, traps lipid peroxyl radicals that mediate lipid peroxidation, whereas FSP1 catalyses the regeneration of CoQ10 using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. In conclusion, the FSP1-CoQ10-NAD(P)H pathway exists as a stand-alone parallel system, which co-operates with GPX4 and glutathione to suppress phospholipid peroxidation and ferroptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Ferroptosis/genética , Glutatión/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Peroxidación de Lípido/genética , Ratones , Proteínas Mitocondriales/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
6.
J Am Chem Soc ; 146(1): 1153-1166, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38156607

RESUMEN

The reactions of organoboranes with peroxyl radicals are key to their use as radical initiators for a vast array of radical chain reactions, particularly at low temperatures where high stereoselectivity or regioselectivity is desired. Whereas these reactions generally proceed via concerted homolytic substitution (SH2) mechanisms, organoboranes that bear groups that can stabilize tetracoordinate boron radical "ate" complexes (e.g., catecholboranes) undergo this reaction via a stepwise addition/fragmentation sequence and serve as useful stoichiometric alkyl radical precursors. Here we show that arylboronic esters and amides derived from catecholborane and diaminonaphthaleneborane, respectively, are potent radical-trapping antioxidants (RTAs). Mechanistic studies reveal that this is because the radical "ate" complexes derived from peroxyl radical addition to boron are sufficiently persistent to trap another radical in an interrupted SH2 reaction. Remarkably, the reactivity of these organoboranes as inhibitors of autoxidation was shown to translate from simple hydrocarbons to the phospholipids of biological membranes such that they can inhibit ferroptosis, the cell death modality driven by lipid autoxidation and relevant in neurodegeneration and other major pathologies. The unique mechanism of these organoboranes is one of only a handful of RTA mechanisms that are not based on H-atom transfer processes and provide a new dimension to boron chemistry and its applications.

7.
J Am Chem Soc ; 146(18): 12511-12518, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38669671

RESUMEN

Phthalimide-N-oxyl (PINO) and related radicals are promising catalysts for C-H functionalization reactions. To date, only a small number of N-oxyl derivatives have demonstrated improved activities over PINO. We postulate that the lack of success in identifying superior catalysts is associated not only with challenges in the design and synthesis of new structures, but also the way catalysts are evaluated and utilized. Catalyst evaluation typically relies on the use of chemical oxidants to generate N-oxyl radicals from their parent N-hydroxy compounds. Herein we provide an example where a potential-controlled electrochemical analysis reveals that succinimide-N-oxyl (SINO) compares favorably to PINO as a hydrogen atom transfer (HAT) catalyst-in contrast to previous claims based on other approaches. Our efforts to understand the basis for the greater reactivity of SINO relative to PINO have underscored that the HAT kinetics are significantly influenced by factors beyond changes in thermodynamics. This is perhaps best illustrated by the similar reactivity of tetrachloro-PINO and SINO despite the latter engaging in substantially more exergonic reactions. The key role of HAT transition state (TS) polarization prompted the design and initial characterization of a chlorinated SINO derivative, which we found to be the most reactive N-oxyl HAT catalyst reported to date.

8.
J Org Chem ; 89(9): 6126-6137, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38619817

RESUMEN

Radical-trapping antioxidants (RTAs) are an indispensable class of additive used to preserve hydrocarbon materials from oxidative degradation. Materials that are regularly subjected to elevated temperatures where autoxidation is self-initiated (i.e., >120 °C) require high concentrations of RTA for protection. Not only is this costly, but it can negatively impact material performance. Herein we show that inhibition of the autoxidation of a model hydrocarbon (n-hexadecane) by phenothiazine (PTZ) at ≥160 °C can be greatly enhanced by the incorporation of either 1° or 2° alkyl substituents in the 3- and/or 7-positions of the scaffold. Structure-reactivity studies, product analyses and computations suggest that this results from hydrogen atom transfer (HAT) from the benzylic carbon of these alkyl substituents in the PTZ-derived aminyl radical intermediate. The resultant iminoquinone methide can then undergo further radical-trapping reactions, depending on the nature of the alkyl substituent. Similar structure-reactivity relationships are observed for the phenoxazine (PNX) scaffold. These results not only have significant implications for the design and development of new high-temperature RTA technology, but also for understanding aminic RTA activity at elevated temperatures. Specifically, they suggest that a stoichiometric model better accounts for the RTA activity of aromatic amines in saturated hydrocarbons than the widely accepted catalytic model.

9.
Angew Chem Int Ed Engl ; 63(21): e202315917, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38437456

RESUMEN

The design of N-oxyl hydrogen atom transfer catalysts has proven challenging to date. Previous efforts have focused on the functionalization of the archetype, phthalimide-N-oxyl. Driven in part by the limited options for modification of this structure, this strategy has provided only modest improvements in reactivity and/or solubility. Our previous mechanistic efforts suggested that while the electron-withdrawing carbonyls of the phthalimide are necessary to maximize the O-H bond dissociation enthalpy of the HAT product hydroxylamine and overall reaction thermodynamics, they undergo nucleophilic substitution leading to catalyst decomposition. In an attempt to minimize this vulnerability, we report the characterization of N-oxyl catalysts wherein the aryl ring in PINO is replaced with the combination of a substituted heteroatom and quaternary carbon. By rendering one carbonyl carbon less electrophilic and the other less sterically accessible, the corresponding N1-aryl-hydantoin-N3-oxyl radical showed significantly higher stability than PINO as well as a modest improvement in reactivity. This proof-of-principle in new scaffold design may accelerate future HAT catalyst discovery and development.

10.
Nat Chem Biol ; 17(6): 665-674, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33686292

RESUMEN

Cell death can be executed by regulated apoptotic and nonapoptotic pathways, including the iron-dependent process of ferroptosis. Small molecules are essential tools for studying the regulation of cell death. Using time-lapse imaging and a library of 1,833 bioactive compounds, we assembled a large compendium of kinetic cell death modulatory profiles for inducers of apoptosis and ferroptosis. From this dataset we identify dozens of ferroptosis suppressors, including numerous compounds that appear to act via cryptic off-target antioxidant or iron chelating activities. We show that the FDA-approved drug bazedoxifene acts as a potent radical trapping antioxidant inhibitor of ferroptosis both in vitro and in vivo. ATP-competitive mechanistic target of rapamycin (mTOR) inhibitors, by contrast, are on-target ferroptosis inhibitors. Further investigation revealed both mTOR-dependent and mTOR-independent mechanisms that link amino acid metabolism to ferroptosis sensitivity. These results highlight kinetic modulatory profiling as a useful tool to investigate cell death regulation.


Asunto(s)
Ferroptosis/fisiología , Aminoácidos/metabolismo , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Sistema Libre de Células , Humanos , Indoles/farmacología , Quelantes del Hierro/farmacología , Cinética , Bibliotecas de Moléculas Pequeñas , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
11.
J Org Chem ; 88(24): 17420-17429, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38051117

RESUMEN

Molybdenum dithiocarbamates (MDTCs) are indispensable lubricant additives. Although their role as antiwear agents is well established, they have also been attributed antioxidant properties that are not understood. MDTCs do not inhibit autoxidation, but they markedly enhance the capacity of diphenylamines (DPAs)─ubiquitous radical-trapping antioxidants (RTAs)─to do so. We find this synergy to be evident not only at elevated temperatures (160 °C in n-hexadecane) but also at moderate temperatures, where autoxidations can be continuously monitored and kinetics more easily interpreted (100 °C in squalane). Interestingly, the synergy disappeared in an unsaturated hydrocarbon (n-hexadec-1-ene), where the RTA activity of the DPA is known to result from the diarylnitroxide derived therefrom. Autoxidations of squalane carried out in the presence of the diarylnitroxide─wherein it is a poor inhibitor─were much better inhibited in the presence of MDTC, suggesting that it converts the nitroxide to (a) more competent RTA(s). Indeed, preparative experiments revealed two species: DPA and a DPA dimer into which a single oxygen atom had been incorporated. This conversion is accelerated by the oxidation of MDTC to a dioxo molybdenum species. A mechanism is proposed to account for these observations, and the implications of our findings and their interpretation are discussed.

12.
Angew Chem Int Ed Engl ; 62(34): e202305801, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37390358

RESUMEN

A simple method for accessing trans-2,3-diaryl dihydrobenzofurans is reported. This approach leverages the equilibrium between quinone methide dimers and their persistent radicals. This equilibrium is disrupted by phenols that yield comparatively transient phenoxyl radicals, leading to cross-coupling between the persistent and transient radicals. The resultant quinone methides with pendant phenols rapidly cyclize to form dihydrobenzofurans (DHBs). This putative biomimetic access to dihydrobenzofurans provides superb functional group tolerance and a unified approach for the synthesis of resveratrol-based natural products.

13.
J Am Chem Soc ; 144(34): 15825-15837, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35977425

RESUMEN

Hydropersulfides (RSSH) are believed to serve important roles in vivo, including as scavengers of damaging oxidants and electrophiles. The α-effect makes RSSH not only much better nucleophiles than thiols (RSH), but also much more potent H-atom transfer agents. Since HAT is the mechanism of action of the most potent small-molecule inhibitors of phospholipid peroxidation and associated ferroptotic cell death, we have investigated their reactivity in this context. Using the fluorescence-enabled inhibited autoxidation (FENIX) approach, we have found RSSH to be highly reactive toward phospholipid-derived peroxyl radicals (kinh = 2 × 105 M-1 s-1), equaling the most potent ferroptosis inhibitors identified to date. Related (poly)sulfide products resulting from the rapid self-reaction of RSSH under physiological conditions (e.g., disulfide, trisulfide, H2S) are essentially unreactive, but combinations from which RSSH can be produced in situ (i.e., polysulfides with H2S or thiols with H2S2) are effective. In situ generation of RSSH from designed precursors which release RSSH via intramolecular substitution or hydrolysis improve the radical-trapping efficiency of RSSH by minimizing deleterious self-reactions. A brief survey of structure-reactivity relationships enabled the design of new precursors that are more efficient. The reactivity of RSSH and their precursors translates from (phospho)lipid bilayers to cell culture (mouse embryonic fibroblasts), where they were found to inhibit ferroptosis induced by inactivation of glutathione peroxidase-4 (GPX4) or deletion of the gene encoding it. These results suggest that RSSH and the pathways responsible for their biosynthesis may act as a ferroptosis suppression system alongside the recently discovered FSP1/ubiquinone and GCH1/BH4/DHFR systems.


Asunto(s)
Ferroptosis , Animales , Fibroblastos , Peroxidación de Lípido , Ratones , Fosfolípidos , Compuestos de Sulfhidrilo
14.
J Am Chem Soc ; 144(32): 14706-14721, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35921655

RESUMEN

The archetype inhibitors of ferroptosis, ferrostatin-1 and liproxstatin-1, were identified via high-throughput screening of compound libraries for cytoprotective activity. These compounds have been shown to inhibit ferroptosis by suppressing propagation of lipid peroxidation, the radical chain reaction that drives cell death. Herein, we present the first rational design and optimization of ferroptosis inhibitors targeting this mechanism of action. Engaging the most potent radical-trapping antioxidant (RTA) scaffold known (phenoxazine, PNX), and its less reactive chalcogen cousin (phenothiazine, PTZ), we explored structure-reactivity-potency relationships to elucidate the intrinsic and extrinsic limitations of this approach. The results delineate the roles of inherent RTA activity, H-bonding interactions with phospholipid headgroups, and lipid solubility in determining activity/potency. We show that modifications which increase inherent RTA activity beyond that of the parent compounds do not substantially improve RTA kinetics in phospholipids or potency in cells, while modifications that decrease intrinsic RTA activity lead to corresponding erosions to both. The apparent "plateau" of RTA activity in phospholipid bilayers (kinh ∼ 2 × 105 M-1 s-1) and cell potency (EC50 ∼ 4 nM) may be the result of diffusion-controlled reactivity between the RTA and lipid-peroxyl radicals and/or the potential limitations on RTA turnover/regeneration by endogenous reductants. The metabolic stability of selected derivatives was assessed to identify a candidate for in vivo experimentation as a proof-of-concept. This PNX-derivative demonstrated stability in mouse liver microsomes comparable to liproxstatin-1 and was successfully used to suppress acute renal failure in mice brought on by tissue-specific inactivation of the ferroptosis regulator GPX4.


Asunto(s)
Ferroptosis , Animales , Antioxidantes/farmacología , Muerte Celular , Peroxidación de Lípido , Ratones , Fosfolípidos
15.
Nat Chem Biol ; 16(2): 223-224, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31896823

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nat Chem Biol ; 16(12): 1351-1360, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32778843

RESUMEN

Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.


Asunto(s)
Cistina/metabolismo , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Tetrahidrofolato Deshidrogenasa/genética , Antineoplásicos/farmacología , Antioxidantes/farmacología , Biopterinas/análogos & derivados , Biopterinas/farmacología , Carbolinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cistina/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Ferroptosis/efectos de los fármacos , Antagonistas del Ácido Fólico/farmacología , Perfilación de la Expresión Génica , Humanos , Células Jurkat , Peroxidación de Lípido/efectos de los fármacos , Metotrexato/farmacología , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Piperazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Tetrahidrofolato Deshidrogenasa/metabolismo , Vitamina E/farmacología
17.
Chem Soc Rev ; 50(13): 7343-7358, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34037013

RESUMEN

Autoxidation limits the longevity of essentially all hydrocarbons and materials made therefrom - including us. The radical chain reaction responsible often leads to complex mixtures of hydroperoxides, alkyl peroxides, alcohols, carbonyls and carboxylic acids, which change the physical properties of the material - be it a lubricating oil or biological membrane. Autoxidation is inhibited by addtitives such as radical-trapping antioxidants, which intervene directly in the chain reaction. Herein we review the most salient features of autoxidation and its inhibition, emphasizing concepts and mechanistic considerations important in understanding this chemistry across the wide range of contexts in which it is relevant.

18.
J Am Chem Soc ; 143(45): 19043-19057, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34730342

RESUMEN

Herein we demonstrate that copper(II)-diacetyl-bis(N4-methylthiosemicarbazone)(CuATSM), clinical candidate for the treatment of ALS and Parkinson's disease, is a highly potent radical-trapping antioxidant (RTA) and inhibitor of (phospho)lipid peroxidation. In THF autoxidations, CuATSM reacts with THF-derived peroxyl radicals with kinh = 2.2 × 106 M-1 s-1─roughly 10-fold greater than α-tocopherol (α-TOH), Nature's best RTA. Mechanistic studies reveal no H/D kinetic isotope effects and a lack of rate-suppressing effects from H-bonding interactions, implying a different mechanism from α-TOH and other canonical RTAs, which react by H-atom transfer (HAT). Similar reactivity was observed for the corresponding Ni2+ complex and complexes of both Cu2+ and Ni2+ with other bis(thiosemicarbazone) ligands. Computations corroborate the experimental finding that rate-limiting HAT cannot account for the observed RTA activity and instead suggest that the reversible addition of a peroxyl radical to the bis(thiosemicarbazone) ligand is responsible. Subsequent HAT or combination with another peroxyl radical drives the reaction forward, such that a maximum of four radicals are trapped per molecule of CuATSM. This sequence is supported by spectroscopic and mass spectrometric experiments on isolated intermediates. Importantly, the RTA activity of CuATSM (and its analogues) translates from organic solution to phospholipid bilayers, thereby accounting for its (their) ability to inhibit ferroptosis. Experiments in mouse embryonic fibroblasts and hippocampal cells reveal that lipophilicity as well as inherent RTA activity contribute to the potency of ferroptosis rescue, and that one compound (CuATSP) is almost 20-fold more potent than CuATSM and among the most potent ferroptosis inhibitors reported to date.


Asunto(s)
Complejos de Coordinación/farmacología , Ferroptosis/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Tiosemicarbazonas/farmacología , Animales , Línea Celular , Complejos de Coordinación/química , Cobre/química , Depuradores de Radicales Libres/química , Peroxidación de Lípido/efectos de los fármacos , Ratones , Modelos Químicos , Níquel/química , Fosfolípidos/metabolismo , Tiosemicarbazonas/química
19.
J Am Chem Soc ; 143(27): 10324-10332, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34213314

RESUMEN

Phthalimide N-oxyl (PINO) is a potent hydrogen atom transfer (HAT) catalyst that can be generated electrochemically from N-hydroxyphthalimide (NHPI). However, catalyst decomposition has limited its application. This paper details mechanistic studies of the generation and decomposition of PINO under electrochemical conditions. Voltammetric data, observations from bulk electrolysis, and computational studies suggest two primary aspects. First, base-promoted formation of PINO from NHPI occurs via multiple-site concerted proton-electron transfer (MS-CPET). Second, PINO decomposition occurs by at least two second-order paths, one of which is greatly enhanced by base. Optimal catalytic efficiency in PINO-catalyzed oxidations occurs in the presence of bases whose corresponding conjugate acids have pKa's in the range of ∼11-15, which strikes a balance between promoting PINO formation and minimizing its decay.

20.
Nat Chem Biol ; 15(12): 1137-1147, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740834

RESUMEN

Lipid peroxidation underlies the mechanism of oxidative cell death now known as ferroptosis. This modality, distinct from other forms of cell death, has been intensely researched in recent years owing to its relevance in both degenerative disease and cancer. The demonstration that it can be modulated by small molecules in multiple pathophysiological contexts offers exciting opportunities for novel pharmacological interventions. Herein, we introduce the salient features of lipid peroxidation, how it can be modulated by small molecules and what principal aspects require urgent investigation by researchers in the field. The central role of non-enzymatic reactions in the execution of ferroptosis will be emphasized, as these processes have hitherto not been generally considered 'druggable'. Moreover, we provide a critical perspective on the biochemical mechanisms that contribute to cell vulnerability to ferroptosis and discuss how they can be exploited in the design of novel therapeutics.


Asunto(s)
Ferroptosis , Humanos , Peroxidación de Lípido , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA