Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
RNA Biol ; 16(2): 166-175, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30608222

RESUMEN

The role of RNA molecules in the priming of DNA replication and in providing a template for telomerase extension has been known for decades. Since then, several transcripts have been discovered, which play diverse roles in governing replication, including regulation of RNA primer formation, the recruitment of replication origin (Ori) recognition complex, and the assembly of replication fork. Recent studies on viral transcriptomes have revealed novel classes of replication-associated (ra)RNAs, which are expressed from the genomic locations in close vicinity to the Ori. Many of them overlap the Ori, whereas others are terminated close to the replication origin. These novel transcripts can be both protein-coding and non-coding RNAs. The Ori-overlapping part of the mRNAs is generally either the 5'-untranslated regions (UTRs), or the 3'-UTRs of the longer isoforms. Several raRNAs have been identified in various viral families using primarily third-generation long-read sequencing. Hyper-editing of these transcripts has also been described.


Asunto(s)
Regulación Viral de la Expresión Génica , Transcripción Genética , Fenómenos Fisiológicos de los Virus , Replicación Viral/genética , Virus/genética , Animales , Epistasis Genética , Eucariontes , Redes Reguladoras de Genes , Humanos , Células Procariotas , Unión Proteica , Interferencia de ARN
2.
BMC Genomics ; 19(1): 873, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514211

RESUMEN

BACKGROUND: Varicella zoster virus (VZV) is a human pathogenic alphaherpesvirus harboring a relatively large DNA molecule. The VZV transcriptome has already been analyzed by microarray and short-read sequencing analyses. However, both approaches have substantial limitations when used for structural characterization of transcript isoforms, even if supplemented with primer extension or other techniques. Among others, they are inefficient in distinguishing between embedded RNA molecules, transcript isoforms, including splice and length variants, as well as between alternative polycistronic transcripts. It has been demonstrated in several studies that long-read sequencing is able to circumvent these problems. RESULTS: In this work, we report the analysis of the VZV lytic transcriptome using the Oxford Nanopore Technologies sequencing platform. These investigations have led to the identification of 114 novel transcripts, including mRNAs, non-coding RNAs, polycistronic RNAs and complex transcripts, as well as 10 novel spliced transcripts and 25 novel transcription start site isoforms and transcription end site isoforms. A novel class of transcripts, the nroRNAs are described in this study. These transcripts are encoded by the genomic region located in close vicinity to the viral replication origin. We also show that the ORF63 exhibits a complex structural variation encompassing the splice sites of VZV latency transcripts. Additionally, we have detected RNA editing in a novel non-coding RNA molecule. CONCLUSIONS: Our investigations disclosed a composite transcriptomic architecture of VZV, including the discovery of novel RNA molecules and transcript isoforms, as well as a complex meshwork of transcriptional read-throughs and overlaps. The results represent a substantial advance in the annotation of the VZV transcriptome and in understanding the molecular biology of the herpesviruses in general.


Asunto(s)
Herpesvirus Humano 3/genética , Transcriptoma , Línea Celular , Humanos , Sistemas de Lectura Abierta/genética , Isoformas de Proteínas/genética , Edición de ARN , Empalme del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Viral/aislamiento & purificación , ARN Viral/metabolismo , Análisis de Secuencia de ADN , Sitio de Iniciación de la Transcripción , Proteínas Virales/genética
3.
BMC Microbiol ; 15: 130, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26129912

RESUMEN

BACKGROUND: Pseudorabies virus is a widely-studied model organism of the Herpesviridae family, with a compact genome arrangement of 72 known coding sequences. In order to obtain an up-to-date genetic map of the virus, a combination of RNA-sequencing approaches were applied, as recent advancements in high-throughput sequencing methods have provided a wealth of information on novel RNA species and transcript isoforms, revealing additional layers of transcriptome complexity in several viral species. RESULTS: The total RNA content and polyadenylation landscape of pseudorabies virus were characterized for the first time at high coverage by Illumina high-throughput sequencing of cDNA samples collected during the lytic infectious cycle. As anticipated, nearly all of the viral genome was transcribed, with the exception of loci in the large internal and terminal repeats, and several small intergenic repetitive sequences. Our findings included a small novel polyadenylated non-coding RNA near an origin of replication, and the single-base resolution mapping of 3' UTRs across the viral genome. Alternative polyadenylation sites were found in a number of genes and a novel alternative splice site was characterized in the ep0 gene, while previously known splicing events were confirmed, yielding no alternative splice isoforms. Additionally, we detected the active polyadenylation of transcripts earlier believed to be transcribed as part of polycistronic RNAs. CONCLUSION: To the best of our knowledge, the present work has furnished the highest-resolution transcriptome map of an alphaherpesvirus to date, and reveals further complexities of viral gene expression, with the identification of novel transcript boundaries, alternative splicing of the key transactivator EP0, and a highly abundant, novel non-coding RNA near the lytic replication origin. These advances provide a detailed genetic map of PRV for future research.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Herpesvirus Suido 1/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Genoma Viral , Datos de Secuencia Molecular , Poliadenilación , Sitios de Empalme de ARN , ARN Mensajero/análisis , ARN Viral/análisis
4.
mSystems ; 9(2): e0100723, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38206015

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing data set of the lytic and latent KSHV transcriptome using native RNA and direct cDNA-sequencing methods. This was supplemented with Cap Analysis of Gene Expression sequencing based on a short-read platform. We also utilized data sets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding by integrating our data on the viral transcripts with translatomic information from other publications.IMPORTANCEDeciphering the viral transcriptome of Kaposi's sarcoma-associated herpesvirus is of great importance because we can gain insight into the molecular mechanism of viral replication and pathogenesis, which can help develop potential targets for antiviral interventions. Specifically, the identification of substantial transcriptional overlaps by this work suggests the existence of a genome-wide interference between transcriptional machineries. This finding indicates the presence of a novel regulatory layer, potentially controlling the expression of viral genes.


Asunto(s)
Herpesvirus Humano 8 , Herpesvirus Humano 8/genética , Transcriptoma/genética , Replicación Viral/genética , Perfilación de la Expresión Génica , ARN/metabolismo
5.
BMC Mol Biol ; 14: 2, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23360468

RESUMEN

BACKGROUND: Pseudorabies virus (PRV), an alpha-herpesvirus of swine, is a widely used model organism in investigations of the molecular pathomechanisms of the herpesviruses. This work is the continuation of our earlier studies, in which we investigated the effect of the abrogation of gene function on the viral transcriptome by knocking out PRV genes playing roles in the coordination of global gene expression of the virus. In this study, we deleted the us1 gene encoding the ICP22, an important viral regulatory protein, and analyzed the changes in the expression of other PRV genes. RESULTS: A multi-timepoint real-time RT-PCR technique was applied to evaluate the impact of deletion of the PRV us1 gene on the overall transcription kinetics of viral genes. The mutation proved to exert a differential effect on the distinct kinetic classes of PRV genes at the various stages of lytic infection. In the us1 gene-deleted virus, all the kinetic classes of the genes were significantly down-regulated in the first hour of infection. After 2 to 6 h of infection, the late genes were severely suppressed, whereas the early genes were unaffected. In the late stage of infection, the early genes were selectively up-regulated. In the mutant virus, the transcription of the ie180 gene, the major coordinator of PRV gene expression, correlated closely with the transcription of other viral genes, a situation which was not found in the wild-type (wt) virus. A 4-h delay was observed in the commencement of DNA replication in the mutant virus as compared with the wt virus. The rate of transcription from a gene normalized to the relative copy number of the viral genome was observed to decline drastically following the initiation of DNA replication in both the wt and mutant backgrounds. Finally, the switch between the expressions of the early and late genes was demonstrated not to be controlled by DNA replication, as is widely believed, since the switch preceded the DNA replication. CONCLUSIONS: Our results show a strong dependence of PRV gene expression on the presence of functional us1 gene. ICP22 is shown to exert a differential effect on the distinct kinetic classes of PRV genes and to disrupt the close correlation between the transcription kinetics of ie180 and other PRV transcripts. Furthermore, DNA replication exerts a severe constraint on the viral transcription.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpesvirus Suido 1/genética , Proteínas Inmediatas-Precoces/metabolismo , Transcripción Genética , Herpesvirus Suido 1/química , Herpesvirus Suido 1/metabolismo , Proteínas Inmediatas-Precoces/genética , Cinética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
Heliyon ; 9(7): e17716, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449092

RESUMEN

This study employed both short-read sequencing (SRS, Illumina) and long-read sequencing (LRS Oxford Nanopore Technologies) platforms to conduct a comprehensive analysis of the equid alphaherpesvirus 1 (EHV-1) transcriptome. The study involved the annotation of canonical mRNAs and their transcript variants, encompassing transcription start site (TSS) and transcription end site (TES) isoforms, in addition to alternative splicing forms. Furthermore, the study revealed the presence of numerous non-coding RNA (ncRNA) molecules, including intergenic and antisense transcripts, produced by EHV-1. An intriguing finding was the abundant production of chimeric transcripts, some of which potentially encode fusion polypeptides. Moreover, EHV-1 exhibited a greater incidence of transcriptional overlaps and splicing compared to related viruses. It is noteworthy that many genes have their unique TESs along with the co-terminal transcription ends, a characteristic scarcely seen in other alphaherpesviruses. The study also identified transcripts that overlap the replication origins of the virus. Moreover, a novel ncRNA, referred to as NOIR, was found to intersect with the 5'-ends of longer transcript isoform specified by the major transactivator genes ORF64 and ORF65, surrounding the OriL. These findings together imply the existence of a key regulatory mechanism that governs both transcription and replication through, among others, a process that involves interference between the DNA and RNA synthesis machineries.

7.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790386

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing dataset of the lytic and latent KSHV transcriptome using native RNA and direct cDNA sequencing methods. This was supplemented with CAGE sequencing based on a short-read platform. We also utilized datasets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding, by integrating our data on the viral transcripts with translatomic information from other publications.

8.
Sci Data ; 10(1): 262, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160911

RESUMEN

The recent human Monkeypox outbreak underlined the importance of studying basic biology of orthopoxviruses. However, the transcriptome of its causative agent has not been investigated before neither with short-, nor with long-read sequencing approaches. This Oxford Nanopore long-read RNA-Sequencing dataset fills this gap. It will enable the in-depth characterization of the transcriptomic architecture of the monkeypox virus, and may even make possible to annotate novel host transcripts. Moreover, our direct cDNA and native RNA sequencing reads will allow the estimation of gene expression changes of both the virus and the host cells during the infection. Overall, our study will lead to a deeper understanding of the alterations caused by the viral infection on a transcriptome level.


Asunto(s)
Mpox , Secuenciación de Nanoporos , Humanos , ADN Complementario , Perfilación de la Expresión Génica , Transcriptoma
9.
Sci Rep ; 13(1): 16395, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773348

RESUMEN

Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a 'super regulatory center' in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries.


Asunto(s)
Herpesviridae , Origen de Réplica , Origen de Réplica/genética , Herpesviridae/genética , Transcriptoma , Perfilación de la Expresión Génica , Genómica
10.
Sci Rep ; 12(1): 1291, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079129

RESUMEN

In this study, two long-read sequencing (LRS) techniques, MinION from Oxford Nanopore Technologies and Sequel from the Pacific Biosciences, were used for the transcriptional characterization of a prototype baculovirus, Autographa californica multiple nucleopolyhedrovirus. LRS is able to read full-length RNA molecules, and thereby distinguish between transcript isoforms, mono- and polycistronic RNAs, and overlapping transcripts. Altogether, we detected 875 transcript species, of which 759 were novel and 116 were annotated previously. These RNA molecules include 41 novel putative protein coding transcripts [each containing 5'-truncated in-frame open reading frames (ORFs), 14 monocistronic transcripts, 99 polygenic RNAs, 101 non-coding RNAs, and 504 untranslated region isoforms. This work also identified novel replication origin-associated transcripts, upstream ORFs, cis-regulatory sequences and poly(A) sites. We also detected RNA methylation in 99 viral genes and RNA hyper-editing in the longer 5'-UTR transcript isoform of the canonical ORF 19 transcript.


Asunto(s)
Baculoviridae/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Metilación , Nucleopoliedrovirus/genética , Sistemas de Lectura Abierta , ARN Viral , TATA Box , Regiones no Traducidas
11.
Gigascience ; 112022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251275

RESUMEN

BACKGROUND: Recent studies have disclosed the genome, transcriptome, and epigenetic compositions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the effect of viral infection on gene expression of the host cells. It has been demonstrated that, besides the major canonical transcripts, the viral genome also codes for noncanonical RNA molecules. While the structural characterizations have revealed a detailed transcriptomic architecture of the virus, the kinetic studies provided poor and often misleading results on the dynamics of both the viral and host transcripts due to the low temporal resolution of the infection event and the low virus/cell ratio (multiplicity of infection [MOI] = 0.1) applied for the infection. It has never been tested whether the alteration in the host gene expressions is caused by aging of the cells or by the viral infection. FINDINGS: In this study, we used Oxford Nanopore's direct cDNA and direct RNA sequencing methods for the generation of a high-coverage, high temporal resolution transcriptomic dataset of SARS-CoV-2 and of the primate host cells, using a high infection titer (MOI = 5). Sixteen sampling time points ranging from 1 to 96 hours with a varying time resolution and 3 biological replicates were used in the experiment. In addition, for each infected sample, corresponding noninfected samples were employed. The raw reads were mapped to the viral and to the host reference genomes, resulting in 49,661,499 mapped reads (54,62 Gbs). The genome of the viral isolate was also sequenced and phylogenetically classified. CONCLUSIONS: This dataset can serve as a valuable resource for profiling the SARS-CoV-2 transcriptome dynamics, the virus-host interactions, and the RNA base modifications. Comparison of expression profiles of the host gene in the virally infected and in noninfected cells at different time points allows making a distinction between the effect of the aging of cells in culture and the viral infection. These data can provide useful information for potential novel gene annotations and can also be used for studying the currently available bioinformatics pipelines.


Asunto(s)
COVID-19 , Secuenciación de Nanoporos , Animales , COVID-19/genética , ADN Complementario/genética , Cinética , ARN , SARS-CoV-2/genética
12.
Data Brief ; 43: 108386, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35789906

RESUMEN

Long-read sequencing (LRS) approaches shed new light on the complexity of viral (Kakuk et al., 2021 [1]; Boldogkoi et al., 2019 [2]; Depledge et a., 2019 [3]), bacterial (Yan et al., 2018 [4]) and eukaryotic (Tilgner et al., 2014 [5]) transcriptomes. Emerging RNA viruses are zoonotic (Woolhouse et al., 2016 [6]) and create public health problems, e.g. influenza pandemic caused by H1N1 virus in (Fraser et al., 2009 [7]), as well as the current SARS-CoV-2 pandemic (Kim et al., 2020 [8]). In this study, we carried out nanopore sequencing for generating transcriptomic data valuable for structural and kinetic profiling of six important human pathogen RNA viruses, the H1N1 subtype of Influenza A virus (IVA), the Zika virus (ZIKV), the West Nile virus (WNV), the Crimean-Congo hemorrhagic fever virus (CCHFV), the Coxsackievirus [group B serotype 5 (CVB5)] and the Vesicular stomatitis Indiana virus (VSIV), and the response of host cells upon viral infection. The raw sequencing data were filtered during basecalling and only high quality reads (Qscore ≥ 7) were mapped to the appropriate viral and host genomes. Length distribution of sequencing reads were assessed and statistics of data were plotted by the ReadStat.4 python script. The datasets can be used to profile the transcriptomic landscape of RNA viruses, provide information for novel gene annotations, can serve as resource for studying the virus-host interactions, and for the analysis of RNA base modifications. These datasets can be used to compare the different sequencing techniques, library preparation approaches, bioinformatics pipelines, and to analyze the RNA profiles of viruses with small RNA genomes.

13.
Pathogens ; 10(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34451383

RESUMEN

Viral transcriptomes that are determined using first- and second-generation sequencing techniques are incomplete. Due to the short read length, these methods are inefficient or fail to distinguish between transcript isoforms, polycistronic RNAs, and transcriptional overlaps and readthroughs. Additionally, these approaches are insensitive for the identification of splice and transcriptional start sites (TSSs) and, in most cases, transcriptional end sites (TESs), especially in transcript isoforms with varying transcript ends, and in multi-spliced transcripts. Long-read sequencing is able to read full-length nucleic acids and can therefore be used to assemble complete transcriptome atlases. Although vaccinia virus (VACV) does not produce spliced RNAs, its transcriptome has a high diversity of TSSs and TESs, and a high degree of polycistronism that leads to enormous complexity. We applied single-molecule, real-time, and nanopore-based sequencing methods to investigate the time-lapse transcriptome patterns of VACV gene expression.

14.
BMC Res Notes ; 14(1): 239, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34167576

RESUMEN

OBJECTIVE: In this study, we applied two long-read sequencing (LRS) approaches, including single-molecule real-time and nanopore-based sequencing methods to investigate the time-lapse transcriptome patterns of host gene expression as a response to Vaccinia virus infection. Transcriptomes determined using short-read sequencing approaches are incomplete because these platforms are inefficient or fail to distinguish between polycistronic RNAs, transcript isoforms, transcriptional start sites, as well as transcriptional readthroughs and overlaps. Long-read sequencing is able to read full-length nucleic acids and can therefore be used to assemble complete transcriptome atlases. RESULTS: In this work, we identified a number of novel transcripts and transcript isoforms of Chlorocebus sabaeus. Additionally, analysis of the most abundant 768 host transcripts revealed a significant overrepresentation of the class of genes in the "regulation of signaling receptor activity" Gene Ontology annotation as a result of viral infection.


Asunto(s)
Perfilación de la Expresión Génica , Infecciones por Poxviridae , Animales , Chlorocebus aethiops , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Isoformas de Proteínas/genética , Transcriptoma
15.
Pathogens ; 10(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34578228

RESUMEN

Vesicular stomatitis Indiana virus (VSIV) of genus Vesiculovirus, species IndianaVesiculovirus (formerly as Vesicular stomatitis virus, VSV) causes a disease in livestock that is very similar to the foot and mouth disease, thereby an outbreak may lead to significant economic loss. Long-read sequencing (LRS) -based approaches already reveal a hidden complexity of the transcriptomes in several viruses. This technique has been utilized for the sequencing of the VSIV genome, but our study is the first for the application of this technique for the profiling of the VSIV transcriptome. Since LRS is able to sequence full-length RNA molecules, it thereby provides more accurate annotation of the transcriptomes than the traditional short-read sequencing methods. The objectives of this study were to assemble the complete transcriptome of using nanopore sequencing, to ascertain cell-type specificity and dynamics of viral gene expression, and to evaluate host gene expression changes induced by the viral infection. We carried out a time-course analysis of VSIV gene expression in human glioblastoma and primate fibroblast cell lines using a nanopore-based LRS approach and applied both amplified and direct cDNA sequencing (as well as cap-selection) for a fraction of samples. Our investigations revealed that, although the VSIV genome is simple, it generates a relatively complex transcriptomic architecture. In this study, we also demonstrated that VSIV transcripts vary in structure and exhibit differential gene expression patterns in the two examined cell types.

16.
Sci Rep ; 10(1): 13822, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796917

RESUMEN

Characterization of global transcriptomes using conventional short-read sequencing is challenging due to the insensitivity of these platforms to transcripts isoforms, multigenic RNA molecules, and transcriptional overlaps. Long-read sequencing (LRS) can overcome these limitations by reading full-length transcripts. Employment of these technologies has led to the redefinition of transcriptional complexities in reported organisms. In this study, we applied LRS platforms from Pacific Biosciences and Oxford Nanopore Technologies to profile the vaccinia virus (VACV) transcriptome. We performed cDNA and direct RNA sequencing analyses and revealed an extremely complex transcriptional landscape of this virus. In particular, VACV genes produce large numbers of transcript isoforms that vary in their start and termination sites. A significant fraction of VACV transcripts start or end within coding regions of neighbouring genes. This study provides new insights into the transcriptomic profile of this viral pathogen.


Asunto(s)
Transcriptoma/genética , Virus Vaccinia/genética , Virus Vaccinia/patogenicidad , Genes Virales/genética , Transcripción Genética/genética
17.
Gigascience ; 7(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476066

RESUMEN

Background: Poxviruses are large DNA viruses that infect humans and animals. Vaccinia virus (VACV) has been applied as a live vaccine for immunization against smallpox, which was eradicated by 1980 as a result of worldwide vaccination. VACV is the prototype of poxviruses in the investigation of the molecular pathogenesis of the virus. Short-read sequencing methods have revolutionized transcriptomics; however, they are not efficient in distinguishing between the RNA isoforms and transcript overlaps. Long-read sequencing (LRS) is much better suited to solve these problems and also allow direct RNA sequencing. Despite the scientific relevance of VACV, no LRS data have been generated for the viral transcriptome to date. Findings: For the deep characterization of the VACV RNA profile, various LRS platforms and library preparation approaches were applied. The raw reads were mapped to the VACV reference genome and also to the host (Chlorocebus sabaeus) genome. In this study, we applied the Pacific Biosciences RSII and Sequel platforms, which altogether resulted in 937,531 mapped reads of inserts (1.42 Gb), while we obtained 2,160,348 aligned reads (1.75 Gb) from the different library preparation methods using the MinION device from Oxford Nanopore Technologies. Conclusions: By applying cutting-edge technologies, we were able to generate a large dataset that can serve as a valuable resource for the investigation of the dynamic VACV transcriptome, the virus-host interactions, and RNA base modifications. These data can provide useful information for novel gene annotations in the VACV genome. Our dataset can also be used to analyze the currently available LRS platforms, library preparation methods, and bioinformatics pipelines.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ADN/métodos , Virus Vaccinia/genética , Animales , Línea Celular , Chlorocebus aethiops , Bases de Datos Genéticas , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/virología , Biblioteca de Genes , Humanos , Empalme del ARN , ARN Viral/química , ARN Viral/metabolismo , Transcriptoma
18.
Genome Announc ; 6(11)2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545308

RESUMEN

The vaccinia virus is a large, complex virus belonging to the Poxviridae family. Here, we report the complete, annotated genome sequence of the neurovirulent Western Reserve laboratory strain of this virus, which was sequenced on the Pacific Biosciences RS II and Oxford Nanopore MinION platforms.

19.
Zookeys ; (494): 13-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25901112

RESUMEN

According to the most recent taxonomic literature, three species of the genus Eresus are known in Central Europe, Eresuskollari, Eresussandaliatus and Eresusmoravicus. We recognized a fourth distinctive species from Hungary, which is described as Eresushermani sp. n. Eresushermani has an early spring copulation period, females have a light grey (grizzled) cephalothorax due to a heavy cover of lightly colored setae, and an epigyne with large flat areas posterior to the epigynal pit, while males are distinguished by a broad and blunt terminal tooth of the conductor. An updated and modified comparative table of Rezác et al. (2008) to include all four Central European Eresus species, and a simple key to the species group's species are given. Habitus, epigyne, vulva and conductor of Eresuskollari, Eresusmoravicus and Eresussandaliatus are also illustrated. An annotated list of papers illustrating Eresushermani due to misidentifications is presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA